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) fr‘l ABSTRACT

A primal feasible (all-integer) integer linear programming

algerithm has been developed and progrimmed, together with a related
|

procedure for obtaining a first feasible solution. Once a feasible
solution is found, the algorithra mamtaxﬂs feasibility at each stage, in
contrast to other algorithms that have been programmed and are
currently available. These other algonthms do not achieve feasibility
until the optimal solution is reached. The primal feasible algorithm is
based on a pargicular way of applying thé cutting planes previously
developed by R. E. GOMORY, and on a Specxflc interpretation of thelr

role. » i

The finiteness of convergence has been established for two-
dimensional plroblems but not for the general case; however, there
appears to be at least computaticnal convergence in a considerable
fraction of the cases.

|

In addition, a Generalized Euclidean Algorithm for finding the
greatest common divisor for more than ttwo numbers is defined. The
solution of systems of linear diophantine equations is presented in
terms of integer linear programming. | »

Some gecmetric considerations tth help to 111um1nate the working
of the algorithm, are examined.

Thesis Advisor: Dr. John D. C. Little

Title: Associate Professor of Industrial?Management
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CHAPTER 1

INTRODUCTION

1.1 The Integer and the Mixed Linear Programming Problems

An Integer LP problem is a linear programming problem in which

all the variables are constrained to take non-negative integer values. In

a mixed LP probiem some of the variables are constrained to be integer,

while the rest are continuous. Both problems have in common that at
least one of the variables is discrete. We can cover both problems

by talking about LP with discrete variables, or discrete LP,

Discrete LP is important because there are many practical prob-
lems in thch some of the variables are actually discrete; for instance,
problems dealing with the number of flights, machines, men, or some
other indivisible urit. If a é_roblem of this fype is attacked by solving
the LP problem a2s non-discrete and by adjusting the solution thus ob-
tained (so that it will fulfill the discreteness requirements), it might
occur that the adjusted solution is far from optimal for the discrete
problem. In many situations it will be profitable to use more refined

methods so that the optimal solution is found.

Another reason why discrete LP is important is because logical



relations may be expressed by means of Boolean variables (variables
that can only take one of the values 0, 1), and thus some logical con-
. straints can be incorporatéd in the definition of a problem. There ar=
many combinatorial problems that can be formulated as discrete LP

. problems by using integer and Boolean Variables.

1,2 Available Integer LP Algorithms

In this section we give a brief description of the integer LP al-
gorithms that are currently (May, "1965) available in the general liter-
ature of Operations Research and Management Science. Most of these
algorithms use, in one way or another, the '"cuts' originally discovered
by R. E. GOMORY (refs. [4], [5]and [6]. These "quory-éuts"

(or "Gomory inequalities'') are secondary constraints that are implied
by the set of original inequalities and t;y the discreténgss of the vari-

ables. Gomory inequalities will be analyzed in the next chapter.

The first algorithm by Gomory [4], [ 5] uses the simplex tech-
‘nique to obtain the solution of the non-discrete problem. If any vari-
able turns out to hav‘e a non-integer value a secondary coﬁstraiﬁt is“!
generated. When this constraint is added it puts the»problem ir.x a
""dual feasible, primal infeasible" form, and the dual simplex method
is used to 6btain a new optimal solution. If there are still some vari-

ables with non-integer variables, the procedure of generating a cut and
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re-solving is fepeated until an all integer sclution is found. The algorithm

is shown to converge to the optimum in a finite number of steps.

The second of Gomory's algorithms [6] uses only integer coeffi-
cients td express all the inequalities and produces all-integer solutions o
throughout the process; but these solutiéns_ are not pfimal fea.sible. because,
together with the cuts, a dual simplex méthod is‘used. Thus, no feasitle

solution is obtained until the obtimum is found. Convergence is assured

if certain rules are followed.

The algorithm by GLENN T. MARTIN [8] is similar to the first of
Gomory's algorithms, with the difference that the cuts that Martin gener-
ates are better (they go ''deeper') and so he uses less iterations td get‘ to

the optimum. But as in the first case, no feasible all-integer solution is

obtained until the end. .
RICEARD VAN SLYKE AND ROGER WETS [11] have approached

the problem of improving performance of integer LP algorithms by study-

ing the way of easily generating efficient cutting planes. They handle

this by using a triangular canonical form. A brief outline of their algo-

rithm is given in their paper and the relationship with Gomory's algorithm

[6] is examined.

FRED GLOVER has studied in [2] the effect of different heuristics

upon the performance of Gomory's All-Integer Integer LP Algorithm [6].

In particular, he has developed the NOT (New Origin Technique) heuristic,




L ey l
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which by means of the simplex algorithm provides a better starting.

point for Gomory's algorithm. In his second paper [3], Glover develops
another approach for solving integer LP problems, An integer matrix

is transformed into another integer matrix that exhibits certain substruc-
ture called bounding form. This substructure is operated upon and lower
bounds' are foﬁnd for a subset of the variables. This information and fhe
successively derived problem matrices are used in conjunction in order
to guarantee finite convergence for the solution of the ori.ginal problem.

Again, no feasible solution is obtained until the end.

More recently, G. L. THOMPSON [ 10 ] has developed a solution
enumeration approach that is characterized by: a) use of the number“
theoretic properties of the objective function to obtain a convenient
transiormation of variables, b) application of a multidimensional search
procedure whose memory requirements vary only linearly with the size
-of the problem. Because of the way in which this search is condﬁcted,

a feasible solution is found only when an (-)pt’ima.l solution is fox)md, His
method seems to be more efficient than Gomory's | [6] ; furthermore, it :

can also be applied to mixed integer LP problems.

Thus no algorithm, of the ones presented so far, works on the
principle of improving upon feasible integer solutions until the optimal
solution is found. ADI BEN-ISRAEL and A. CHARNES [1] propose a

Direct Alyorithm that has this motivation. Their algorithm has in commos




with ours the fact that they use the type of Gomory c(xts whicﬁ we call
"non‘-zero natural inequalities'. However, the Direct Algorithm has a

’
very important shortcoming, which is that at certain stages an '"Auxiliary
7 'Problem" has to be solved.. This auxiliary problem is an integer LP
problem that might be as large as the original problem; but they do not
offer any systematic method for solving it, other than obtainiing the solu-
tion of its continuous counterpart and "i_nterpola.ting"' from it an integer
solution. The process of interpolating is not éxplained. Th ‘“llf)irect

Algorithm does not seem to be practical excepi for small problems; as

a matter of fact, no computational results are reported.

1.3 Our Results

" »‘ ,
A) A primal feasible (all-integer) integer LP algorithm has been

eveloped and programmed; it has the important characteristic that at

|
any stage of the computation one always has a feasible integé’r solution.
|

hapter 2)

B) A procedure for obtaining a first feasible solution has also been
developed and programmed. In this formulalation we do not need addi-
tional variables 61' constraints as is usually necessary. Of special interest
is a technique that takes advantage of any original équalities in ordef to

reduce the size of the problem. (Chapter 3)

[
C) A proof of finite convergence of the primal algorithm, when




applied to two-dimensional problems, has been found. (Chapter 4,

section 4. 2)

D) We ha\‘re not established the finite convergéncc of the algorithm
in the general case. Although this is disappointing, computational |
experience with other algorithms that are known to converge is not
entirely satisfactory. A certain fraction‘ of problems tried do not con-
verge in any. tolerabig_ amount of t-ime; Froni.a practical point of view,
then, the actual performance of an algorithm on the computer would
appear to be its most importani test. In this respect, the experience
so far is that our algorithm is competitive with other avlgorilthms.
Because of the convergence difficulty that exists vnth all integér Lp
algorithms, the primal feasible property seems particularly desirable.
There is no other programmed primal feésible algorithm that we know

of. (Chapter 4, sections 4.3 and 4. 4)

E) A class of Genefalized Euclidean Algorithms, for finding the
greatest common divisor of more than two numbers, is definzd, Con-
cepts of integer LP é.re épplied to the problem of obtaining the general
solution, and of generating non-negative solutio;s, of systems of linear

diophantine equations. (Chapter 5)

F) Georetric considerations that throw light on the workings of
the algorithm are examined. Of special interest is a technique (inverse

pivoting) for expressing the relevant Gomory cuts explicitly in terms of




the original variables at each stage of the algorithm. (Chapter 6)

G) Finally, some specific extensions are suggested. (Chapter 7)
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CHAPTER 2

A PRIMAL FEASIBLE ALGORITHM

It is the purpose of the present chapter to develop a primal feasible -
algorithm for solving the integer LP problem. Before giving the outline
of the basic algorithm we will infroduce the necessary notation, present
some basic properties of the tableau representation and discuss the .spe-
cial constraints called "GOMORY inequalities', which are essential for

our algorithm.

2.1 The Problem. Notation

Our notation will be similar to the one used by Gomory in

references [5 ]and [6] .

We will consider the problem of finding integers xj (i=1,..., n)

that maximize

z = ao’ 0? 5 a:.,’j (-xj) | (2.1.1)
j=1

subject to




2.3 ("j) €a0
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—

and to

x‘. 20
J

i=l,..., m (2.1.2)

j=1l,..., n (2. 1.3)

where all the coefficients and constants are integers.

By introducir.g the non-negative slack variables 8, and by using the

parametric variables t, we can express the problem given by (2, 1. 1),

(2. 1. 2) and (2. 1. 3) ae follows:

- Maximize 2z

with

x, = «1(-t)
J - J

(2.1.4)

i= l’ooc. m

l,o.o' n

j:

where the s and the . x, are non-negative integer variables, z is an

unsigned integer variable, and all the coefficients and constants are

integers.



e

In matrix notation we would have:

Maximize 2z

0.0 0
with X=AT AT =(ag 0 an)
. z . l “'il
5 -t,
. 'tz_
X= 8 To = .
m
x . .
-l (2. 1. 5)
X v —t
S f | P

where aj is the jth column of the (m + n+ 1) by (n + 1) matrix formed
with the constants and coefficients of (2. 1 4), and where the same

specifications apply.

The representation of the problem as given in (2. 1.4) or in (2. 1. 5)

is the parametric representation due to A. W. Tucker and it allows one

to express every constraining variable and every variable '"of interest"
y ng o

in terms of a set of non-basic or parametric variables tj « (In the

notation of (2. 1. 4), the si and the xj are constraining variables -and
~also of interest- but z is not constraining, only of interest). Because
of the way they have been defined, these parametric variables are also

constrained to be non-negative and integer.

-10-




The relationships given in (2. 1. 4) can be expressed by means of

a tableau of the following type:

1 -tl -tn
} A = ao,o ao’ 1 s e @ ao.n
*17%1,0 .
sm= am’o . . . . .

(2. 1. 6)

x = a . . a . N
n m+n, 0 ' * “m+n,n

2.2 Pivoting. The Simplex Criterion

By using Gaussian elimination we can change the set of non-basic
variables (i. e. the paramétric variables), thus expressing the left hand
variables in terms of different sets of parametric variables. In partic-

ular, if we want to exchange th by 5.0 Ve pivot on the element

a0 50 This means that we change the tableau according to the follow-
»

ing formulas:

O’ l’o.a, m+n

1 = - i
3, jo (a, jO/aiO, jO) 1

0, I,..., n; j#jO

! = a -

! .
5,5 i,j aio,j(ai..jo’aio,jo’ J

(2.2.1)

-11-



3 th ]
This is equivalent to solving for th in the 10 equation and

replacing this result for t,  into the other equations. (The marginal

ALY

labels "810" and "tjo" exchange places on the outside of the tableau).

In vector notation, formulas (2. 2. 1) become

%350 ° "%o (I/aio,jo)

/ ) J=0,1,..0,m5 j# O

' - -
@ j Tajy°9o (aiO,j 250, j0

(2.2:2)

Our basic algorithm will always pivot on rows that will be added ’ |
3 \ 'r

to the bottom of the tableau; so that the vertical set of marginal labels

(i.e. 2z to x ) will always remain the same.

The current solution is the vector of values that are obtained if
every parametric variable is set equal to zero; in other words, it is the
column vector a 0 = (ao’ 0’ al’ ARRES am+n)' The value of the solution ,
is the value 2z , that is, a0 0° A tableau is in primal feasible form

] .

J
(and the so#tion is said to be primal feasible, or simply, feasible) if |

(‘ !
gative variable has a non-negative value, that is, if

l,.e., m+ n. A tableau is said to Be in dual feasible

A\

. 20,j=1..., n when we are maximizing z, or if

a j < 0, when we are minimizing z.

1
A column a j is lexicographically positive (o.j> 0) if its first ele-

ment, counting from the top down, is positive. Column o is (lexico-)
L ) |

larger than column a, if uj -a.> 0. From now, when we refer to the

' l




sign of column, unless otherwise stated, it is to be understood in this

lexicographical sense.

A tableau is said to be in lexico-dual feasible form if every column

is positive (except, perhaps, column zero) when we are maximizing, or

if every column is negative when we are minimizing.

If the tableau is both primal and dual feasible it means that the
objective function has attained its optimal value and the current solution
is one of the optimal solutions (see Appendix A). If the tableau is both

primal feasible and lexico-dual feasible it means that the lexico-optimal

solution has been found. That is, the lexico-largest feasible solution

~

has been fouad if we are maximizing and the lexico-smallest if we are

fninimizing (see Appendix A). In either case we say that optimality has

been shown or proved; in the latter case we also say that lexico-optimality

has been proved.

The purpose of pivoting is to bring the tableau into an optimal
form. We may start with a primal feasible form and try to attain dual
feasibility by appropriate pivoting (while maintaining primal fea.éibility).
or we may begin with a dual feasible form and try to attain primal
feasibility (while maintaining dual feasibility). The first technique is
usually called a (primal) eimplex method, and the second one a dual
simplex method. If instead of trying to attain, or to maintain, plain

dual feasibility, we try to attain, or to maintain, lexico-dual feasibility,

-13-




we will have a lexicographical simplex method, and a lexicographical

dual simplex method respectively.

In Appendix A we present an example that shows that it is necessary
to use a lexicographical éimplex method in our basic algorithm, rather
than a "plain' simplex method. Whenever we mention the simplex

method in the rest of this paper, we will be referring to the lexicographical

siniple’x method, unless otherwise stated.‘ Also, we will usually assume

that the objective is to maximize.

If the pivoting e;ement is a, » row i0 is called the pivoting

0, j0

row and column j0 is the pivoting column (column zero is not considered

for pivoting).

When using the simplex method we will pivot on negative columns
if we are maximizing, and we will pivot on positive columns if minimizing.

The reason for this will be clear below.

Assume we have chosen a coluran, jO, for pivoting; the simplex

method criterion for choosing a pivoting row i0, is then the following:

Let I be the set of indices i, i# 0, such that ai j0>0‘ . Choose

i0 ' so that:

(359, 0/250, jo) = o {ai, 0’3, jO} (2.2.3)

If the set I is empty and we are minimizing, it means tnat the

-14.




objective function is unbounded, If we are maximizing, it either means
that the objective function is unbounded (if ao 0 <0 ), and/or that some
’

of the problem variables are unbounded (for further discussion see gection

4.1 and Appendix A).

The simplex criterion for pivoting guarantees that the solution will

stay prirnal feasible if it is already primal feasible,

If we are fnaximizing. the column vector a 0 will be (lexico-
. o _ . >
graphm?,ll,) non-decreasing because ai0,0 0, aiO,jO > Ov , aj0< 0
and from (2. 2. 2)
1
)Z2a

/

=Qa

L - .
©%97% " %o 240,020,350’ > %0

If we were minimizing we would choose ujO ':l’ 0 and a4 would be
non-increasing .
For further details on the basic theory of linear programming see

any standard textbook such as, Hadley, G., Linear Progzamming.

Reading, Mass., Addison-Wesley, 1961.

2.3 Gomory Inequalities

As mentioned before, most of our results make use of the Gomory
Inequalities {(or Gomory cuts), which were first developed by Gomory and
now bear his name. In order to make our exposition more self-contained

we will reproduce here, in a slightly modified form, the proof of Ben-1sraeil

-15-
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and Charnes for the Gomory Inequalities (from b ]).

Ben-Israel and Charnes Theorem

For any real number x let
[x ] denote the largest integer < x
<x> denote the smallest integer 2 x

' ‘ . n .
Also, let L denote the set of intege_r vectors i _I_‘S_ and E+ the

. . n
set of non-negative vectors in E.

Ben-lsrael conaiders inequalities of the type

n
Z a x, sao ‘ (2.3.1)
j=1 ' ,

and shows that integer vectors x = (xl, ey xn) which satisfy (2. 3. 1) lie
in a closed half-space which depends on (2. 3. 1) but always contains E: ,

satisfy other constraints which will be called Gomory Inequalities.

For this, the coefficients in (2.3. 1) are decomposed, for any real

number p > 0, into their integral and fractional parts as follows: -
;=P [a,/p] +1 | i=0, l,..., n (2.3.2)
where 0 sfi <p

Theorem (part [a’]):

Let p be any positive real number and fi as defined in (2. 3. 2)

-16-




If xe L satisfies (2.3. 1) and

n ,
z fi xi 2 0 (2.3.3)
i=1 '

then
n
Z [ai/p] x, Gr[ao/p] (2.3. 4)

} i=1 ‘

" Proof

Rewrite (2.3.1) as

n n _ .
< ,
P/ [ai/p] x, + z £ x, <p [aO/p 1+ £, (2.3.5)
, i=1 i=1
»

|
now there are two possible cases:

|
) _Either |

-5 fT.s-f' | (2.3.6)

in which case (2. 3. 4) alw%.ya holds regardless whether x e L. or not, or

else '

n .
Z fi x, < f (2. 3. 7)
i=

17~




in which case we use the following inequality which always follows from

(2.3.5), upon dividing by p, and taking integer parts on both sides:

n : n
? » [ai/p] x, + (1/p) § fx < kolp] +1,/p (2.3.8)
i=1 i=1 |

n

Now, since x e L, z [ ai/p] x. is an integer and, using (2. 3. 3),

i=1

(2.3.7), and the fact that 0 =< fo < p., we finally obtain (2. 3.4). This

proves part[ a] of Ben-Iorael and Charnes Theorem.

The second part of his theorem is actually a corollary of part [ a]

as we will presently show.

Part [ b] states

Let p be any positive real number, and let g be defined by

bi=p<bi/p>-gi i=0,1,..., n (2.3.9)

if xelL satisfies

n
bi xi = bo - o (2.3.10)
i=1
and
n .
z g; xiZO. , (2.3.11)
i=1

-18-



then

z <bi/p>b x, = (by/p) (2.3.12)

i=1

We state that part[ b] is a corollary of part [ a]

Proof

Let us define bi as
bi=--ai i=0,1,..., n (2.3.13)
We will make use of the faét that for any real number c¢ this holds:

-[c] = <—c> and [ -c] = - <c) ' (2.3.14)

We can rewrite (2. 3.2) as follows

‘-bi =p[-b/p] +1 i=0,..., n (2.3.15)
then, by (2.3.14), }

b =p (bi/p> - £, ‘ (2.3.16)
~we see that (2. 3.9) is met if we define

gi=fi | i=0,..., n (2.3.17)
Relationship (2. 3. 1) may be rewritten as

n .

Z (-b) x, = -by (2.3.18)

i=1

-19-




from which (2. 3.10) follows.
Also, (2.3.11) follows from (2. 3. 3) and (2. 3.17)

Finally, (2.3.12) is obtained from (2. 3. 4) by rewriting it as

| Z [-b,/p] x, =[-by/p]
. i=l

and, by (2.3.14)

n

- zl <bi/p> x, = - <bp/p>

We have thus proved that part [ b] of the theorem is implied by
part [a] . (The converse is also true).

Part [ a] of the theorem is due to Gomory [ 6] but instead of

n

condition (2. 3. 3) he has the stronger condition that x e E+ . He proves

the theorem for the cases p=1, and p>1.

Thus, we have.proved that any Gomory cut generated from some
constraint s is satisfied by evefy non-negative integer vector x that
satisfies s . Whenever we have an integer LP problem defined by a set
of constraints we could add any number of Gomory cuts as generated from
the original inequalities, and the expanded set of inequalities would still

be feasible for (satisfied by) the same set of non-negative integer vectors.

-20-




Gomory Cuts in Tableau Notation

In the tableau, the ith row is

n
+_z 2, j(-t): s 20
=1

and is equivalent ‘o

n
z oJ J i,O
its Gomory cuts will be:

s .
al,j/p t- ao’o/p t p>0

N

J
j=1
or
n
b.t.<b
Z ij 0
j=1
where
b.= a, .
J le/p

j=o0,1,.

se,y, I

(2.3.19)

(2.3.20)

All the coefficients and variables of (2.3.19) are integers so that

-21-
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if we introduce a slack variable r , it will be both non-nggative and integral

n

= - 2.3.‘21
e=bgt ) b (-t) | (2.3.21)

j=1

The cut (2. 3.19) or its equivalent (2.3.21) may be added to the

original constraints by adding to the tableau another row with the coefficient:
(bO, bl' s e 0y bn) .
If this added row is used as the pivot row, the pivoting formula‘a

(2.2.1) will be changed into:

| = e
%50 7 7 %0 (1/b)
n

a'=a -a,,(b./b. - 3=0,..., n; i # 30 2.3.22
! JQ(J/bJo) j R { )

-*A Gomory cut will be called a non-zero-cut if bo # 0 and a zero-

cutif by =0.

In the next section and in the following chapters we will study

further the theory and the application of Gomory cuts.

2.4 Development of the Basic Algorithm

We want to develop an ""All-Integer Primal Feasible Integer LP
Algorithm'. This means that we want the current solution to always be

(primal) feasible and integral; furthermore, we want all the coefficients
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to remain integral.

1f the starting solution is feasible and all the coefficients are integer,
feasibility can be reserved by uging the simplex criterion for pivoting; and
integrality of the coefficients can be maintained by having the pivoting

elements equal to 1 (see (2.2.1) ).

In general, it is not always possible to find pivoting elements that
satisfy the simplex criterion and that have, at the same time, a value of
1 . However, such a pivoting element may always be obtained by properly
generating a Gomory cut and appending it to the tableau, as will be shown

below.

. * . . . > O .
Row i0 is pivotable on column j0 if aiO,jO ‘ Let Ijo be the
set of rows that are pivotable on column jO . A pivotable row i0 is

most-binding on column jO if it satisfies the simplex-like criterion:

1} (2.4.1)

If < 0 andif row i0 is most-bindi,dg on column jO , we may

o‘jO
generate a cut from row .i0 by letting p = a, 0 ° This cut may be

appended to the tableau and its element bjo may be used as the pivoting

element. (Rrow i0 will be called the generating row, and aiO,jO will be

the generating element). The generated cut will not only satisfy (2.4.1),

but it will also satisfy the simplex criterion (2.2.3). Furthermore, the
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pivoting element bjO will be equal to 1 (as may be checked from its

definition (2. 3. 20)), and the pivo?ing formulas (2. 3.20) may be simplified

n
]
=]

1]
50 j0

j=0,...,n; j#j0 (2.4.:

]
-]
]
=]
o

a', . n D.
j j 30
These new formulas show| that the integrality of the tableau elemen

will be preserved upon pivoting.
}

If some row i is pivotable on column j and it has a, j >a it
will have [a.i O/ai j] = 0 and it is clear that it will be most-binding on

column j. Even more, we say il is zero-binding because a zero-cut coul

be generated from it.

Considering column j, if there is at least one pivotable row and if

none of the pivotable rows is zero-binding we have a breakthrough because
i 3 P

we can generate a non-zero-cut (the breakthrough is in the maximizing dii
. |

" tion'if a, < 0). If there is no pivotable row on column j (and if o < 0) th
| ! .

the prciblem has an unbounded solfution (which is another type of breakthrot

|

|

The Basic Algorithm (h}[aximizig Version)
A -1f ihere is a breakthrorgh in a negative column j0 , select sucl
a column for pivoting. If no negaéive column has a breakthrough take som:
negative column jO for pivoting. ' (If there are no negative columns the

tableau is optimal).

B - Having chosen jO , take one of the most-binding rows on colum
, !
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jO as the generating row i0 (if there is none, the problerh is unbounded).

C - From row i0 generate a Gomory cut with p = aiO,jO and add
this constraint to the bottom of the tableau.

D - Pivot on element bjo of the added constraint and erase the
constraint after having pivoted. Go back to A.

The basic algorithm assumes that the tableau is in primal feasible
. form and that all the cc;efficients are intéger. Also, it does not specify
how to choose a pivoting column from severai prrcraple’r candidates, or how
to choose a generating row when there are several most-binding rows on
the pivoting column jO . These matters will be discussed in Chapter 4.
If we want the algorithm to be minimizing' we only havg to require that

the pivoting columns be positive.

In the process' of solution there will be an improvement in the

solution vector a_, whenever a breakthrough is found and used. Goinrg

0

from one breakthrough to another constitutes a major iteration. But in

order to obtain a breakthrough it might be necessary to perform several
pivots with zero-cuts. Every pivot, whether it is done with a zero-cut
or with a non-zero-cut, is a minor iteration (or simply, iteration). Thus,

a major iteration requires a number of minor iterations.

2.5 An Example

We will solve here the example given by Martin in [ 8]
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max z = le+3x2

I3 . S
with le + 5x2 8

3x1 + sz< 9

Introducing the slack variables and putting the problem into the

tableau form:

1
z = |0 -2 -3 The arrows show the column jO and the
8, = 8 2 5° - - row i0 . The dot (o) marks the element
= = i %
8, 9 3 2 p=5 aiO,jO an.d the asterisk (*) marks the
x, = 0 -1 0 pivoting element in the added constraint.
x,= [0 0 -1
= *
T 1 0 1
4
Pivoting and repeating the process:
1 -x) -1 bt n by T l _,L '3
z =013 .2 3 z =15 2 _..“,3,, 'z =15 -1 3 z =16 ll 2| -~
° = - = - - = -
8, = 3 27 -5 -8, = 1 -2 1 8, 1 -1 1 s, 2 1 2 lOp
o
= - = 4 - = - = - -
8, 7 3 2 5, 3 7 %sz 4 4 7 5, = 0 -4 3
x, = 0 -1 o x, = 1 1 -3 x1= 1 -2 3 x1= 3 2 1
: o
xz=1 0 1| x, = 1 0 1 x, = 1 1 -1 x2=0-l 0
- = - * = -
r,= 1 1% _3 r, 0 -1 1 Ty 1 1% -1

2 ’ A




CHAPTER 3

OBTAINING A FIRST FEASIBLE SOLUTION

3.1 Different Types of Variables

- Every row of the tableau corresponds to an expression that gives
a certain variable in terms of the (current) pavametric variables. The

variables thus expressed will be called row variables and they include the

objective, the slack variables, and the problem variables. The constraints
of the original integer LP are denoted by the fact that some (or all) of
these row variables are constrained. Four types of variables will be

studied: unsigned variables, non-negative variables, zero-variables and

bounded variables. In addition, the concept of objective variible will be

discussed.

3.1.1 Unsigned Variables

An unsigned v#ri;ble is a variable that is not, per se, necessarily
constrained in sign. The most common case of unsigned variable is the
one corresponding to the objective function, but in some problems there
might be additional unsigned variables that are pertinent to the formu-
lation of the problem. The treatment of rows corresponiing to unsigr.ed

variables is simple; they are not considered as candidat:s for generating
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cuts, but the corresponding coefficients are transformed by means of
the pivoting formulas (2.4.3) as are those of any other row, Unsigned

variables are always considered to be feasible, of course,

3.1.2 Non—neiative Variables

A non-negative variable may be of any of two types: a slack variabl
that was introduced to change an inequality into an equality, or an origina.
problem variable that was required to be non-‘-negati\.re.. Non-positive
va.fiables are not considered here because they can be converted to non-
negative variables by # simple change of Qariable. A non-rne'gative |
variable si is feasible if its current value, aiO , is' non-negative, The
row corresponding to a non-negatﬁe variable will be a canaidate for

generating cuts only if it is feasible (for an exception see section 3.2).

3.1.3 Zero-Variables (The Treatment of Equalities)

One way to deal with equalities in linear programming is to
represent them by means of opposing inequalities (for instance, ax =b ,
¢x = d may be represented as ax €b, cx <d, -(at+c)x<-(b+d)).

As far as we know, this has been the usual approach in integer LPI.

'We have used a different approach,

1 See, for instance, Giglio, R. J. and Wagner, H. M. "Approximate
Solutions to the Three-Machine Scheduling Problem", Operations

Research, v. 12 (1964), pp. 305 - 324,
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Take the following equality:

n .

- 3. 1.1
z a x =ag ( )
i=1 ,

i

Let us introduce an artificial variable s and put (3. 1. 1) in the
following form:

n

s=a0+ Z a, (-xi) | (3.1.2)

i=1

It is obvious that any set of xi' s that satisfy (3.1.1) (that is,
' any set of feasible xi' s), will make s equal to zero. We call s a

zero-variable because it is constrained to be zero; that is, s is

feasible only when its value is zero. Furthermore, a variable of this

type is an éxglicit zero-variable since we explicitly know its nature

from the problem formulation.

1f, after several pivots, a zero-variable row has only one non-
zero element 'ai,j » j# 0, this means that si = ai,j (-tj), so that
the only feasible value of the parametric variable tj is zero. If this
is the case we might as well ‘mak‘e tj = 0 which is equivalent to erasing
the column corresponding to tj » thus reducing the width of the tableau.

Furthermore, if after erasing a column there are one or more rows

that have only zero elements, (except perhaps in column zero), we may
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also erase these rows if we take care of storing somewhere the current
(and final) values of the corresponding row variables, The'justification
for this is that if every element a, . j# 0, of row i is equal to

')

zero, then there is no way in which a, could change by pivoting (we

i, 0

would always have a, = 0 in the pivoting formulas (2, 2.1)).
:

i, jO
.This reduction of the tableau is of course equivaleqt to using the

equality in questibn to solve for one variable in terms of the others, and
to substitute this expression in the other constraints so as to reduce the

dimensionality of the problem. The algorifhm for finding a first feasible

solution will do this for us, automatically.

Eut this is not the only way to reduce the dimensionality of the
problem. Because of the special nature of integer LP pfoblefns, even
if there are no equalities in the formulation of the problem, in many
cases the dimensionality of the set of feasible integer solutions will be
smaller than. the dimensionality of the space of feasible continuous
solutions, Thus, in the process of ;olution of a problem we may find
out that some of the parametric va;iableé become, in fact, impllicit

zero-variables. If this situation occurs and we are able to recognize

it, the tableau can be reduced. The following lemma gives the basic

rule for recognizing implicit zero variables.

Lemma 3.1: If there is a row i such that a, . 20,j=0,
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l,.¢¢, n, and this row corresponds to a non-negative variable, then ]

every column j with a, § > 2 o corresponds to an implicit zero-
’ ’

variable,

5&1 ;j=ln-'~v n} ‘ndJ+=,

Proof: LetJ = {j| 0<a, 0

i,j
(sl a, j> a, gid=liee, n} . Let us assume that J* is not empty
’ 14

so that the lemma applies. Because row i corresponds to a non-

1
negative variable the row represents the following constraint

. };{"

z a,.t_+z a, .t < a,

I 7% I $ LI i,0
je J je J

A cut can be generated by letting p = min + {a, .} the coefficients of !

je J '
the cut will be:

by = [3; o/P) =0
o =1 if jeJ?t ,
b, = [a.i ./p] ) i
) ) =0 if jeJ - b
The Gomory cut is then: z bj tj Sbo = 0 with bj 21 for je J+ .
Je J+ :
But since -1l the parametric variables tj can be constrained to be |

non-negative (without losing feasible solutions to the original problem)

then the ohly feasible value for the variables tj » Je J+ is zero. Thus,
t. =0, je J+ , implies that this set of parametric variables are zero-

variables and their corresponding column may be erased in order to

! |




—

reduce the tableau. (Q.E.I

A final remark about zero-variables: a zero-variable is at the
same time a non-negative and a non-positive variable, and we may

consider it so whenever it is convenient.

3.1.4 Bounded Variables

Many of the practical p.roblems formulated as integer LP problems,
involve thg use of variablés that are constrained to be either zero or one;
these variables are sometimes called Boolean or decisi.on QariaSIels.
Generalizing this céncgpt, let us assume that the integer variable x, is
bounded as follows 0 Sxi < Mi (where Mi is some positive integer).
This requirement could be expressed witﬁ two sepé.ratg rows of the taklea
one row would express X, 2 0. and the other one would stand for
x, =M, -x, 20,

But it is possible to express both constraints with a single' row (this

séving computer memory). If we have the constraint
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Thus, the slack variable x: is feasible if Mi - ai 0 20. When

x: is feasible, it will be binding on column j if a, j'< 0 ; whereas X,

]

when feasible, will be binding on column j if a j >0.
In order to handle a bounded variable it is erough to state its non-
négativity, the value Mi , and the fact that the variable is bounded (an

arbitrary label would be used to specify this in the comp\iter program).

For analytical purposes we will think of it as two separate non-negative _

variables.

3.1.5 Objective Variables

Any variable, whether unsigned, non-negative or zero-variable,
can be considered to be the problem objective at any stage of the process
of solution of a given problem. The motivation for doing this will be

discussed in the next section.
If we are taking s, as the current objective function we will
consider its row as the zeroth row, that is, as the_topmost row. (The
order of the other rows should be specifically assigned, but the criterion
for assigning the order is unimportant, as long as the rows retain their~ =~
ordering). If si is being maximized, oniy lexico-negative columns will
be considered proper candidates for pivoting. If there is no negative
column it means that 5, cannot be maximized further. (If 8, is being

minimized only positive colurnns are considered for pivoting).
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3.2 Finding a First Feasible Solution

| Before proceeding to optimize the original objective function, we
require that the tableau be in a (primal) feasible form. There are two
types of infeasibilities that we want to remove: a) zero-variables with
non-zero values, b) non-negative variables with neg;tive values. It
seems #dvisable to make the zero-variables feasible first so that we

may reduce the size of the tableau as soon as possible.

One way to deal with zero-variables that are not feasible is the
following: Let us assume that 8, is a zero-variable and its value is
%,0 0

a; (si = -si) which is also a zero variable). We will consider the

>0 (if a < 0 we could multiply the row by -1 and work with

problem defined only by those rows corresponding to non-negative

variables that are alread.y feasible, and we will try to minimize 8,
subject to- A 20, thatis, conside'ring.row i itself ag a constraint,
To do this we apply our basic algorithm to the subproblem; that is, we
pivot in such a way that the non-negativity of the subproblem variables

is preserved while we seek to bring the value of 5, down to zevo. Thus,

we will pivot only in columns that are lexico-positive in the subproblem.

If there is no such a column for the row i under consideration, and if
a o > 0, this means that no feasible solution exists for the original

?
problem. (The solution space of the original problem is contained within

the solution space of the subproblem; hence, if the subproblem does not
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have any feasible solution neither does the original problem).

If we want to reduce the tableau by eliminating the z'ero-.Variable
we will not be satisfied with driving its value down to zero. We have to
continue pivoting in such a way that row i will eventually have only one
non-zero element, This will be accomplished in a finite number of steps

as will be shown next.

Lemma 3.2: If we generate a Gomcry cut from row i0, using

| # 0, and we pivot on column jO of the cut, the new elements

p=| 20, jo
. . . R - .
of row i0 w111»sat1sfy the following: al,y 30 | aiO,jOI :
< g C 230 . is, . .
0 aiO,j< I aiO,jO' , J# 30 That is, every element of row i0 will be

non-negative and smaller than | a0, jOl ; except the element on column
jO , wbich will be negative and equal to - | 2.0 jOI .
Proof: We have defined [c] to denote the largest integer smaller

than, or equal to ¢ . Thus, if b# 0, the following holds:
0<(a/b-[a/b]) <1

If b>0 we have
Os(a-'b [a/b]l)<b

or
0<(a|b)<b (3.2.1)

where (al] b)=a-blamb], b>0 (3.2.2)
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This property will be used to prove the lemma.

The cut generated fiom row i0 with p = | a will have the

o,jol

following coefficients:

bj=[aio,j/' aiO,jO“ -’}'J=0,..., n
. /
. s . o . . .a> 0 ’

There may be two cases aiO,jO >0, or 310,30 <0. If ‘10,]0
the pivoting formulas will be those of (2. 4. 3), and specifically for
i=i0, we will have: |

a .=-a. . =-|la, .|

) i0, jO i0, jO
| 3 - = -

20,5 = %0, ~ 0,30 %i = %o, j | aio,jo| [‘io,j/' -‘io,jo| ]

j=0,c0., n j# 10
If aiO,j0< 0, we will have bjo = -1, and aiO,jO = - | aiO,jO' . We can
obtain the pivoting fqrmulaé for row i0 from (2. 3.22), vt};xat is:

! = = -
20,50 = *0,50 = - | %0, 50!
' = b = -

20,5 = %0,5 % 0,50 %5 = %05 - I 30,50 [%0,5/1 %0, jo! ]

j = O, o0 oy n ' : j # jo
Thus, in either case we have the same pivoting formulas for row i0,
and by comparing them with (3.2.1), we see that Lemma 1 is indeed
satisfied. | , . ' (Q. E.D. :

Lemma 3.3: If we have a row i with ai

0° 0 , we can reduce it.
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_in a finite number of steps, so that only one non-zero element will remain.

Proof: The way to obtain this reduction is to use only positive
elements of row i as generating elements. (If initially there are no
positive elements in row i, we xﬁay use a;'xy of the negative elements as
generating elements. From Lemma 3.2 we see that the other elements
of row i will become either positive or zero. If at least one of them
becomes positive we may apply the rule given above. If they all becofﬁe
zero then Lemnia 3.3 is already satisfied.)

By always taking positive generating elements from row i, we
are assured by Lemma 3.2 that they will alwayé be monotonically
decreasiné. But they cannot decrease forever because they are positive
and they decrease by integer amounts. Thus, after a finite number of
iterations there will be no more positive elements in row i . The only
way this may happen is if every element is zero except th.e one that was
used last as generating element, as may be checked from Lemma 3.2,

This proves Lemma 3.3. (Q.E.D.)

The procedure for row reduction will be accelerated if the smallest

of the positive elements is chosen each time as the generating element.

When the row of a zero-variable is reduced so that it has only one
non-zero element aij , J# 0, we know that the parametric variable

associated with column j is a zero-variable, and we may erase this
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column, thus reducing the size of the tableau.

Once we have eliminated one zero-variable we take another one
and repeat the procedure until there are no infeasible zero-variables.

Then we may turn our attention to removing the infeasibility of non-

--negative variablee, if there is any infeasibility of this type.

We have said that ig removing the infeasibility of one zero-
vari;l?le the pivoting is done in such a way that the variables thé.t are
already feasible, remain fgasible. This Wouid, perforce, slo »Jv?l‘own
the process of removing that infeasibility and of r:educing the tableau.
Another strategy would be to concentrate * 'ed\ic;:ing the elements of

the row and in eliminating the zero-variable, without worrying whether

any other variables become infeasible. This would bring about a faster

‘reduction of the tableau, and once it has been reduced it might bg more

efficient to worry about the other infeasibilities. The desirability of

one’ }method versus the other is, perhaps, mostly a matter of computer
" |

pPro ramming, and we will not discuss it further.

In order to remove the infeasibility of a non-negative variable

A (assuming that a, < 0) we consider again the subproblem formed

0
with those rows that are already feasible, and having as objective the

maximizing of 8, . Only those rows that are (lexicographically)

negative within the subproblem will be considered for pivoting. If,
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at some stage, there is no such a column, and if ai,O < 0, this meansg
that 8 cannot reach a noﬁ-negative value in the subprcblem, and
therefore there is no feasible solution of the original problem. If the
subproblem is unbounded in some column j (suc;h that ‘i,j < 0), we
can then generate a cut from row i by letting p = | ai,j! . The Gomory

cut will have b0 < 0 and bj < 0 and after pivoting on bj , ai o will be

non-negative (this is the type of cuts that Gomory uses in [6]).

But whether or not such unboundedness is found, the idea is to
improve Bi until it becomes non-negative, and at the same time to
maintain feasibility in the subproblem. The variable s, does not have to
be optimized in the subproblem; as soon as it becomes non-negative we
take another infeasible variable as our new objective, if there are any
left (in the process of "satisfying'" a certain non-n2gative variable, some

other variables may al#o be satisfied).

When every variable is feasible we take the original objeétive of

the problem and we proceed to optimize it, preserving the feasibility.

This technique for finding a first feasible solution has been
incorporated in our algorithm and it has been programmed for the IBM 7094.
Its convergency depends, of course, on the convergency of our basic

algorithm.

The ideas behind this approach are not exclusively for integer




ey

-

linear programming, but they can also be applied, with proper modifica-

tions, to regular linear programming.
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CHAPTER 4

THE PROBLEM OF FINITE CONVERGENCE

4.1 Considerations about Converjsnce

As mentioned in Chapter 2, in applying the basic algorithm there
will be major iterations (breakthroughs) and minor iterations. Every
time a major iteration occurs, the solviion vector (column o.o) increases

lexicographically.

If we are using the maximizing version of the basic algorithm, we

have the following theorem:

Theorem 4.1 If the problem is bounded in evez;y direction, there
can only be a finite number of major iterations. |

Proofl: A scquence of major iterations will produce a sequence of
columns a_'s thalt will be in lexico-incgeaaing order and which will be
bounded above by xo , the lexico-largest feasible solution:

1 21 2 0
<a_<...<x

1 This proof followa to a certain extent a similar proof given by Gomory

in [ 6].
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Let us assume that we had an infinite sequence of this sort. The
vectors are all-integer, so their components charge only by integer
amounts. The first component (corresponding to the objective function)
cannot increase indefinitely because it is bounded above by Z4 the first
component of xo . Therefore; the first component can only increase for

a finite number of times and it then remains fixed at some value 2z' < zc .

From now on the second component mu#t be non-decreasing; and
there are two alternatives: a) it‘ increases indefinitely, or b) it increases
up to a certain value, and then remains fixed. Alternative a) is excluded
because we assume that the problem is bounded in eirery direction, that
is, that the feasible range of every vaz;iable has an upper bound. If
alternative b) occurs we turn our attention to the third component of
Gg which offers the same two alternatives. In every case alternative
a) will be excluded, so that if every component incbreases up to a certain
value ana then remains fixed, the bvalue of every component will be fixed

after a finite number of major iterations., Thus, the assumption of an

infinite seqﬁence has been contradicted and the theorem is proved. (Q.E.I

However, if we use the minimizing version of the basic algorithm

we have the following theorem, which is stronger than the previous ons:

Theorem 4.2 If the prcblem is bounde2 ir the direction of

minimizing z , there can only be a finite number of major iterations.
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Proof: T;he proof is similar to the previous one except that we
have now a lexlgco-decreaaing Qe'quence of solution vectors, and that
!
|
while z has a lower bound by hypothesis, the lower bound of every other

{
,9
variable is autdmatically provided, because they all have zero as a lower

bound. (RQ.E.D.) ‘
: ' J/

(Any particular problem can, of course, be solved by either version
' v ~ of the basic al orithm, but in view of theorems 4.1 and 4.2 it appears
) that the minimj‘zing version is preferable).

[ ] .
In order to guarantee finite convergence for the overall algorithm

|

' if is necessary}; to guarantee that a breakthrough (that is, a major iteration)
.can always be j}obtained after a finite number of minor iterations. One
reason why a major iteration might require a very large or even an
X inﬁnite number of iterations, is because at any stage there may be‘more
than one gener:ating element (i.e. more than one choice of i0, jO ), and |

! _ if proper rules of choice are not followed, some sort of cycling may then

occur.

The proﬁlem of finding rules of choice that will assure finite
" convergence of the primal algorithm appears to be a difficult one. After
|
a large nurnber of analytical and computational efforts we have not

succeeded in flnding rules of choice that we can prove will guarantee .

Lo, .
finite convergence in solving a general problem. However, we report
; _

\ ;
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here two encouraging results: first a formal proof of finite convergenc
of the algorithm when applied to two-dimensional problems; and second,
the definition of a family of rules of choice (for the general problem)

which has both analytical and computational appeal.

4.2 Finite Convergince of Two-Dimensional Problems

We have been able to prove finite convergence of the algorithm
for two-’dimenaional integer LP problems. Consider a general two-
dimensional integer LP problem. It can be expressed by means of a
tableau with columns j, j=0,1,2; and rows i, i=0,1,...,m. These.
m+ 1 rows include the objective function (row zero), ;nd n constraints,
twq of which are the non-negativity constraints of the problem variables.
The objective variable is unsigned and every other row variable is non-
negative. We will assume that the tableau is already in primal féasible
form since we are coneerned here only with the basic algorithm. Let
us say that the objective function is to be maximized, and let us assume

that the problem is bounded in every direction.

1 This does not entail any loss of generality because it can always be
done by using A. CHARNES and W.W. COOPER '"regularization"

method. See their book Management Models and Industrial

Applications of Linear Programming. 2 vols. (New York: John

Wiley and Sons, Inc. 1961) pp. 42¢-427.
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Types of Rows. Dominance

One of the characteristics of pivoting on an element of value + !
(as it is the case with the basic algorithm) is that the pivoting column
(o.jo) changes sign; and in particular, it becomes (lexico-graphically)

positive.

Conside‘ring the two columns (o.1 , o.z), there are three possibil- -
ities:

a) Bofh are positive,

b) One is negative, the other one is positive,

c) Both are negative.

In case a), optimality is already proved, so the problem is solved.
In either case b) or ¢) we can pivut on a negative column and it will
become posifive, while the other colum;'x either becomes (or stays)
positive or negative. If positive, optimalitf has been proved; if negative,

we are left with a negative column and a poJitive column,
o

Whenever one column is negative and the other one is positive

\the zeroth column has been excluded from these considerations), we

say that the tableau is in normal form. We can see that the tableau

will remain in normal form until optimality is proved. (The pivoting
. d':f""d
column always becomes positive and the other one becomes negative, ™ -
-.i—‘..i -
&

oA

unless optimality is proved). We will denote by "a'" the negatii"'."\"
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column (its elements will be aia) and by '"b" the other column (elements
TR

A row i, i# 0, will be classified according to the signs of its

elements a, and a,_ :
ia ib

Type 3, 3y
1 0 -
2 - 0
3 - -
4 - +
5 0 +
6 + 0
7 t . ‘—'.'-\“-:».
.-"{“1'
845 ¢ +

pr

Furthermore, let us divide the rows of type 4 into two sub-types.‘
e

2L a ‘ ) ?
/-‘“7 If ay a, 235 3,
P ) If a, a, <2y 3,

Any row of type 1, 2, 3 or 4a will be called a dominated row. Any

row of type 4b, 5, 6, 7 or 8 is a ncn-dominated row. The current level

is the number of hon-dominated rows in the current tableau. Rows of
type 1, 2 or 3 are called trivial. Only rows of type 6, 7 or 8 are

- pivotable because thev are the only ones with a, > 0.
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Considerations about Pivoting

When the tableau 1s 1n normal form and a pivot is performed,
columns 1 and 2 exchange roles (if optimality 1s not proved). That is,
1f column 1 was designated as column '"a'" before pivoting, it will

become cclumn '"b'" after pivoting: and vice versa, The same is true

for column 2, of course.

The pivoting formulas (2. 4. 3) rﬁay then be expressed as:

k+1 k k . k
30 T %o P03,
k+! k k .k

= - i ' 4. 2.
aia aib bb (i0) aia ‘ ( 1)
Kl k -
ib - %a 1=0.e., m

ko

: J =0, a, b; al.<. >0 (4.2. 2)
1,8 IJ

k . k
where b, (1) = |a, . /a
) [ 1,3/
The quantities b: (i) will be called b-factors; they are defined

only for pivotable rows. (The superscript k indicates that the quantity

corresponds to the kth tableau).

Some Lemmas for the Tableau in Normal Form

Let +Ik = {iji=1,..., m and al;a>0}.

Lemma 4.1: If after pivoting (on column a) on a cut generated

from i0 (i0 ¢ +I:), optimality is not proved, then the following conditions

hold for any row i, ie +I: :
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/
’

Condition A) If b (x)>b (i0) then b (1)
Condition B) If b (i) -b (10) then either b (1)< -1
or row i becomes trivial,
S kK, o k. .
Condition C) If bb (1)<bb (i0) then row i becomes trivial,
Proofs:

Condition A: Let d = b: (i) - b: (i0), we will then have d 31

because 'b: (i) > b: (i0) and the b-factors are integer,.

~ Applying (4.2.1)

ktl kK k.. k K k
.'ia -aib-bb(xo)ai‘- .b—b (i) a +<lml

By means of (3.2.2) and (4.2.2)

k+1 k k k
a =(a |a)+da
ia ib ia ia
Therefore, because of (3.2.1) and because d 31,
a!‘ﬂ 2 a!( > 0
ia ia
Also ak“ = -a!‘ < 0
ib ia ,
so that |ak“| <
ia
k+l k+1 k+1 ktl
then b (i) = [a, /1 a] = [-|aib | /a. '] (Q.E.D.)

Condition B: If bb (i) =cb: (i0) we will have by (4.2.2), (3.2.2)
and (3.2.1),
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k+tl (ak | k )

ia ~ ‘Yib ! Sia
and a?‘ > a?(” 2 0

i ia
also, a?‘“ = - a}( < 0

ib ia

. ktl . .
1) if a, = 0, then row i becomes of type 1, thatis, a

trivial row.

2) I a}ﬂ.l > 0, then I a?wll = .ag > akﬂ
ia ib ia ia
therefore
Ktl . kil kil, _ K+l , ktl -
by (i) = [aib /aial 1 = [-] a, |/.-,1iil ] < -1 (Q.E.D.)

Condition C: If b: (i) < b: (i0) and we let d = b:z (i0) - b: (i)

then d 21
now
k+l k k. k _ k k, .. k k _  k k k
3, o by (0 a =ay -b a -da =(a,la)-da
)
but
(al.(l al.() <'a|.1,< and dal,( Za].‘
ib' "ia ia ia ia
so that
al.‘“ < 0
ia
also,
al_(+1 = - al,( < 0
ib ia
then, row i becomes of type 3, that is, a trivial row. (Q.E.D.)
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Lemma 4.2: Ever\{ pivot, exce.pt perhaf:s the last, is done on a

cut generated from a rov% of type 7.
| Proof: . In normal :gbrm the only pivotahle rows are those of type
6, 7 or 8.
If we pivot on a cut generated from either a type 6 or a type 8,
we will have b: (i0) 20 |and

kt1 _ k k... k

,,,‘Oa,,"‘ -b 10)aoa>0

k Lk
i 20 £ 2
| {!(because by assumption, 20a < 0 and a0y 0 for k=1)

ktl _  k

b - 220"

also, a

'I‘he.. solution would Ehave been proved optimal and the algorithm
would stop. Therefore, ;)nly the last cut upon which we pivot may come
from a row of type 6 or é; all the other cuts must come from rows of
’type 7. {Notice that optiljnality can also be proved after pivoting on a

|
cut generated from a typé 7 row).

’ Lemma 4. 3: Ever§ dominated row stays dominated, unless

optimality is proved.

Proof: A dominateél row may be of type 1, 2, 3 or 4a. If fow i
is of typé 1, after pivoting (on a cut generated from a type 7 row), we
will then have l

ktl _ k k. .k _ -
a_ =ay -bb (lo)iaia-ai <0; a
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taus, it becomes a row of type 2, and therefore, it remains dominated.

For rows of type 2, 3 and 44, we may restate lemma 4.3 in the

following fashion:
Lemma 4.3': Any row with a::< 0 and a:b

ko ko koK
“0a *ib ° %0b %a

such that

will become, ir ore iteration and if optimality is not
proved, a row of type 4a.’

This lemma states that rows of typss 2 and 3 become of type 4a;
and those of type 4a remain of type 4a. This agrees wi > lemma 4.3,

Proof of lemma 4.3': If optimality is not shown we shoulu “ave

kt1  k

k+1

a5a < 0, because we already knov’ that 20 " ®0a >0. ';['hen,
k+1 k k Lk,
a,, ~ a0p ~ aQa bb (i0)< 0
or ,
k , k k.
(ay,/2,,) > by (i0) (4.2.3)

We want to prove that row ., after pivoting, will be a row of
type 4a, that is, such that

k+l k+1 _ k+l k+l k+l k+1
a a, Za a, , with a; <0, a >
Ca ib

0ob “ia ia ib ° ‘

Applying (4.2.1)

k+1l k k,. k .

a,, = aCb - bb (i0) a. <0 (by hypothesis)
k+l _
20b T " %0a
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k¢l ¥ k .k
a,

ia = aib ) aia bb (i0)
L ks ‘ (4.2. 4)
ib ia : .

From the original hypothesis and from (4. 2. 3)

W) > 0

remembering that a%( < 0, we have a%( < bk (i0) a}(
ia ib b .ia

and therefore a!:;:l <0 .

kel ktl kil kil
0a Zib ob 3ia

Let us now assume that a

If we substitute the expressions (4.2.4) into this inequality, after
simplifying we obtain ,
k k _ k K
%0a ®ib = %0b %ia
which contradicts the original hypothesis. Therefore we should have:
kt1” ktl  ktl kil
%0a %ib "% %ia

k+l

k
We have also proved that ai:1 < 0 and a, > 0 ; so that the

proof of lemma 4.3' (and of lemma 4. 3) is now complete.

Lemma 4.4: A row of type 4b, ir a'single iteration, and if

optimality is not proved, will either remain of type 4b, or become or
type 5 or 8, but it cannot become of type 4a.

Proof: By definition, a row of type 4b has a:(a <0, a:(b >0

P S
ane 20a 4b < 2ob %ia’
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We will have

K+l k k. . k
a,, T, -b (i0)a
a!‘” = - ak >0 .

ib ia

N L . . k+l | -
We cannot say anything certain about the sign of a._ it may be positive,
zero, or negative. If it is positive, row i has become of type 8; if it is
zero, row i has become of type 5; if it is negative, row i has remained

of type 4.

Let us assume that a::I < 0, and that row i has become of type
k+l k+l _  k+l k+l

32 3b Z%b s - Putting this in terms of elements

4a, that is, that
th . e '
of the k  tableau and simplifying we get

k ko k Kk
202 %ib © %0b 2ia

but this contradicts the originalv hypothesis; so that we should have

k+l k+l k+l k+tl
a a, <a a

0a 2ib ob 3ia and this proves that row i may remain of type

4b, but cannot become of type 4a.

i
] :
Lemma 4.5: A row of type 5 will become, in a single iteration and

if optimality 1s noi shuw., a row of ‘ype 6.
Proof: If row i is of type 5, then by definition

a¥(=0,ak>0
ia ib

after pivoting:
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k+1 k k ... k _k
a, T, b li0a =a, >0
a!‘“ = - a.k =0
ib ia

Thus, row i has become of type 6.

Lemma 4.6: A row i of type 6 or 8 will become, in a single

iteration and if optimality is not proved, a row of type 7. Furthermore,

it will have b:“, i)=-1 .

Proof: By |definition, if row i is of type 6 or 8, it will have

® y:‘!il
a? >0, a}( 20 .
ia ib

If optimality is not proved this means that we pivoted on a cut

generated from a row of type 7 (lemma 4.2). Therefore, we will have

" :
0)<-1.
bb (i0) 1

Then X
)
k+1 k k,. k k
= - 2
4. T3 - b (03, >a, >0
k+l _ k;
% 77 %4 o .
Thus, row i is now of type 7. \
Also, 1 '
kt1 k1, kil | k1, kil
1} = = - - < .
bb (i) [aib /aia ] 1 because | 1 (aib /aia )< 0
| ,

Lemma 4.7: A row i of type 7 may chome, in a single iteration
and if optimality is not proved, a row of type 1 or 3, or it may remain of

type 7.
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Proof: By definition, if row i is of type 7 it will have

a.k>0,a¥(<0.Then,
ia ib .
k+1 k k. k
82 "% - bb (i0) %a
a?“l C al,< <0
ib ia

If optimality is not proved this means that b:: (i0) <-1. Now, ali(l-:l'

. . . 32 e .
is necessarily negative, but a, s the difference of two negative
quantities; therefcre, it may either be positive, negative, or zero. Row

i will then become of type 7, 3 or 1 resepctively.

The Graph of Changes of Type

From lemmas 4.3 to 4, 7 we realize that a row may change its type
in a eingle iteration (and if optimality is not shown) but only to certain

other types. The possible changes can be summarized with the following

graph:

S

Non-dominated rows Dominated rows
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It will be noticed that there is a possible flow of non-dominated

rows, but not vice versa; that is, we have proved that the level is non-

increasing.

A Theorem on Convergence of Two-Dimensional Proklems

Lemma 4. 8 Unles Vsd;;rartix;;iity 1s pro;/;ad,ﬂ or ';nle'ss a brreAakthroug‘h
is found, the level can bte decreased by at least one in a finite nurmber of
iterations. T |

_I_J_x_-gg_f_: If there were no pivotable >ro;ws in the kth tableau, the
problem would have an unbounded solution and this would contradict our
initial assumption.

If there are only pivotable rows of type 6 or 8, but none of type 7,
then at least one of them is most-binding and the solution will be proved
optimal as was shown m lemma 4.2, |

But let us assume, for the sake of argument, that there is at least‘
one row of type 7, and that no row of type 6 or 8 does e;ve'r become mostt

binding. Of the set of rows of type 7 there will be some rows i with

'b‘; (i) = 1 and some @‘i‘iﬁ”"s: (i) < - 1. Let us call the two subsets

7Ik and 7112( , respectively. There will be two cases:

1

7
Case I: Ik empty (and 7Ik not empty)

2 1
7.k 7Tk ) -
Case II: I2 not empty ( I1 either empty of not empiy)

In case I, after one iteration and if optimality is not proved, we
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will have case II; because by condition B, lemma 4.1, every row in 71‘;

vy . 1. k+l . , o , .

will be in Ip o (1= 7+ forming this iteration, one or more of the rows
Ll

il ‘i ihay become trivial, in which case the lemma is also satisfied.)

k
- In case II, if there is any most-binding row in 711 and we pivot on
k . P
the cut generated from it, then every row of 71‘2 will become trivial,

because b:; (i0) = - 1 and because of condition C of lemma 4.1; a‘nd the

level would therefore decrease, thus satisfying the lemrha.
7 k
So, let us assume that at least one row in IZ is most-binding and

that we pivot on the cut generated from it (and optimality is not proved

. 7.k :
upon pivoting)., Every row in 11 will be in 7I];+l as condition A of

lemma 4.1 shows (because b: (i0) < -1 and b: (i) = - 1 for every .

ie 7Ik). Any rows that were of type 6 or 8 will comc to belong to 7111&l

1
7.k .
as lemma 4. 6 shows. Furthermore, any row of 12 which had

b: (i) > b: (i0) will become of the set 71}1&1 because of condition A of

lemma 4.1, If there were any rows in 71: such that b: (i) < b: (i0) ,

then, By condition C of lemma 4.1, they would become trivial and the

lemma would be satisfied.
7. k+1
The only rows that would belong to I2 would have belonged to

7’Ik and would have had b: (i) = b: (i0). The only way the level could

2

remain unchanged is if we could always be able to find a most-binding

row in the sets 71}21 , h=k, ktl,..., and if none of the rows in these

sets became trivial.
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-k k
However, any row i in 71; would have had bb (i) = bb (i0) ,

b:“ (i) = b:+l (i0), ..., b: (i) = b: (i0) , and therefore, because of
lemma 3.2 and (4.2.1) we will have
k k+1 a!-z-l S h

a, > a, > s e > a, 2 0 .
ia ia la 1a

Clearly, because the aia' s are integer and ara is finite, there
will be a tableau h in which every row i, ie 7I‘Z1 , would be such that

a.?l >a!’l 20
i0 ia -

This means that: either at least one of the rows originally in 12

became trivial at some tableau h (when‘ ara = 0); and/or g tableau h
has been found in which no row of 71? is zero-binding. Theref.ore, if -
there is any zero-binding row in 711: we are forced to pivot on the cut
generated from it and thus every row in 712 would become trivial and
the lemma would be proved. (The set 71; would not be empty because.
by condition B of lemma 4.1, it would contain at least .the row from which
the last cut was generates; ~nless that row h#s become trivial,‘ in

which case the lemma is also satisfied.) | Otherwise, if there is no
either, this means that a breakfhrc;ugh has

zero-binding row in 711;

been found, and the lemma is again satisfied. N " (Q.E.D.)

Theorem 4.3: If the two-dimensional problem is bounded‘(as in

lemma 4. 8) then, in a finite number of minor iterations {pivots), an

optimal solution will be found and its optimality will be proved.
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Proof: Any tableau in normal form has a finite number of non-
dominated rows (i.e. the level is finite); therefore, by repetitive

application of lemma 4.8 we =zee that, unless optimality is proved or a

breakthrough is found, the level will decrease, and it could become zero

in a finite number of iterations, But this would implf that the problem is

unbounded and this is contrary to our assumptions.. Therefore, in a

finite number of iterations either a greakthrough is folund or optimality is

proved. Thié, together with theorem~ 4.1 proves ti’xe presrcient théorem.
(RQ.E.D.)

It should be pointed out that neither finding a breakthrough, nor
. pivoting after it has been found, does necessarily imply a decrease in the

level.

Comments on the Proof of Finite Convergence

It should be noticed that the proof, besides boundedness of thé
problem, only réquires that the tab cau be in normal form; aad this
can be accomplisﬁed by using at most one iteration; but it does not
require the use of any specific rule for choosing one among the several
most-binding rows that might be availasle for pivoting, and it does not
require that rows of type 6 or 8 (which imply immediate optimality) be
recognized.

However, the performance of the algorithm with a two;dimensional

problem can be improved greatly if the following rule is used.
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Rule: Among the available most-binding rows (in case there are

ties) choose 10 auch that

bk (i0) = max {bk (i)}
b ) b
ie 1

where 1 is the set of most-binding rows.

This rule has two convenient effects: a) it accelerates the decreasi '

“of the level, b) it "recognizes" and gives preference to rows of type 6 or

8, thus shortening the process.

4.3 A Promising Family of Rules of Choice for n-Dimensional Convergen

Among the many rules of choice that were tried analytically and
computationally for convergence of general problems, one class of rules
finally emerged as the most reasonable, and it has indeed given encour-
aging computational results. We have called this family of rules:

hierarchical rules of choice. Let us consider the n current k-dimension:

problems P(k) , constituted by the first k current parametric variables

th
(1 <k <n) plus the zero column. This establishes a current -hierarchy

of protlems; that is, P(k) is a sub—problem of P(k+ 1), which in turn
is a sub-problem of P(k + 2) , and so forth. P(n) is, of course, the

original problem.

The rules will be presented by giving the algorithm.
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Hierarchical Algorithm

| A) If there is no breakthrough on any column go > C, otherwise go
to B.

B) From the columns with a breakthrough, select the most negative
one as the pivoting column. Choose onz of the most-binding rows as |
generating column, gen‘erate the Gomory cut, pivot and .go back to A.

C) Sele;ct the smallest not lexico-optimal problem F(k). That is,
k ié chosen so that aké 0 while cx.j g 0, j=1,..., k- g (This
impliés that the current P(k-1) has been proved lexico-optimal.) If
there are no negative columns the lexico-optimal soluti‘on has been found

and its lexico-optimality has been proved.
D) In order to solve the current Yk} We ¢»tract from it a (k - 1)
dimensional not lexico-optimal »ub-problem. Thi+ means that we have

to reorder, in some specific way, the {irst k ooiumns & that the negative

————

column ak will now occupy one of the fiist \ pla. o w {tnat is, without

counting column zero). This new first k - 1 column will define our new

P{k - 1). This reordering is done recursively so that a new hierarchy

of sub-problems P(j), j=1,..., k-1 is established. The negative
th

column (previously the k ) will now occupy the first position and,

together with a_ , constitutes the new P(l). The first column is now

0

chosen as the pivoting one.

E) Considering again the complete tableau, one of the rows that
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is most-binding on column 1 is selected as the generating row, a cut is
generﬁted from it, and after pivoting (thus possibly modifying the whole

tableau) one goes back to A.

In step D we implicitly extract from P(I;) , by reordering, a new
P(k - 1) because the current one has been proved lexico-optimal. It is
in this re-extracting c¢f a sub-problem that ~the main theorétiéal difficulty
lies, because in ordér to assﬁfe cén\;ergeﬁéé; tﬁirisrhﬂe\r»; (k . 17)7-
dimensional sub-problem has to "dominate'", in s>me fashion, the current
P(k - 1) whose lexico-optimality has just been est#blished-. In other
words, if the current P(k - 1) has been proved lexico-optimal, it means
that no better solution for P{n) is found in the (k - l1)-dimensional
polyhedron defined by tj =0, j=k,.. , n. Thus, we have to change
one of those parametric variables specifically, by reordering the first
k columns as déscribed above, we bring in a new t,{ . This new tk
would have to be more ""dominating' than the old one. Although this
dominance has been established for 2-dimensional problem;s, it has noﬂtj

been generalized to larger problems. The way we have used to go around

this difficulty is described next.

Some Heuristic Members of the Fami}_y

Since no analytical grounds for extracting the sub-problems have

been discovered, we have resorted to heuristics (and, anyway, heuristics
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- are usually the roads to analytical grounds).

If the current P(k - 1) is lexico-optimal and oy <0, extracting.
a new P(k - 1) from P(k) is equivalenﬁto upgrading one. of the first
(k - 1) columns to the kth place and n;gking , one of the first (k - 1)
colum;-ns. It is in selecting that columﬁ of P(k - 1) which is to be
uﬁgraded, that a heuristic can be introduced. Some possible heuristics .
are: a) upgrade the (k - l)t?‘ column (heuristic JA), b) upgrade the
first column (heuristic JB), c) upgrade the column upon.which we.h,ave
pivoted most recently (heuristic JC), d) upgrade the lexico-largest

column (heuristic JD).

Rule A when applied recursively, would put the kth column in
the first place and would shift the first (k - 1) columns one place up.
Rule B would reverse the order of the first k colu.mns."" Rule D
would rearrange the first k columns in lexico-decreasing order. In
any case, the pivoting column (which previously was the kth) would end

up in the first position.

Once the pivoting column has been chosen, and the columns have
been reordered it is necessary to choose a pi‘voting row among the ones
tﬁat are most-binding on the pivoting column. The fﬁllowing are two of.
the possible heuristic x;ulesl of choice: a) take the first most-binding

row (heuristic IA), b) take the most-binding row that generates the
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lexiéo-largest Gomory cut (heuristic IB). Heuristic IB is a direct
extension of the rule given at the end of section 4.2. (A row vector Bi
is lexicograéhically larger than another row vector Bj if the first
element where they differ, counting from left to right, is larger in Bi
than in Bj 2)

4.4 Computational Experience

We bave not tried out every combination of heuristics nor even
every heuristic. Only the following three combinationavha.v‘e been studied
JA - 1A, JA -IB, and JB - IB. Combinations JA - 1A and JA - IB were
successful with many problems but JA - IB was more efficient: JA - IB
solved proktlems that were not solved (in a reasonable amount of time') by
JA - iB, and those problems that were solved by both combinations were

solved faster by JA - IB.

A few small problems were tried with combination JB - IB but
none were solved. Thus, we have selected combination JA - IB as a

good heuristic.

In order to compare the performance of our algorithm with those
of other authors we have selected the nine examples found in ref. [10].
Thompson has used those examples to compare his method with the all-

integer method of Gomory [6]. The results are shown in Table 4.1.
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In analysing these results it should be considered that the iterations of
Gomory's all-integer algorithm are computationally; equivaient to ours.
Thompson reports two figures fof performance: the number of st‘opped‘
linear programming problems that were solved (L. P.'s), and the total
. number of pivots required for their solution (last column of Table 4.1).
He also states that the solution of one of the stopped LP problems takes
about the same as one of Gomory's iterations, whether it ig done by

hand or by machine.
. ' (}l

The nine problems are initially in dual feasible form which would

seem to be advantageous to both Gomory's and Thompson' s algorithms.

Our algorithm was programmed in such a way that whenever

several columns had a breakthrough, the first of these columns was

chosen, rather than the most negative. Ly




TAELE 4.1 NINE EXAMPLES SOLVED WITH DIFFERENT METHODS

Example | Dimensions Rule JA - IB Optimal Found

| of Tableau | o . sible [ Optimal | Optimal' | GOMORY | THOMPSC

Found Found Proved (iterations) | L.P.'s Pi
(Iteration Nd.)

1 | 5x3 5 7 8 13 20

2 7x 4 35 37 37 1000* ?

3 7 x 4 24 25 84 1570 173 1

4 11 x 6 500% - - ? ?

5 5x 3 51 102 102 ? 255 1

6 5x 3 102 102 202 ? 260 1

7 5x 3 102 102 202 2 255

8 17x9 4 12 74 5215 13

9 18 x 8 1000% - - ? 2038 108

Otber Problems Tried

A 8 x 6 0 17 17

B 20x 13 14 19 20

c 25 x 13 78 - 300% -

D 43 x 19 16 22 38

The asterisk (*) indicates that the program was stopped after this many

iterations without having found the answer.

(1)

This is the total number of iterations réquired to solve the problem

(it includes the iterations used for finding a first feasible solution). A
question mark (?) indicates that the figure was not reported in ref. [10].

It does not imply that the problem was not solved.
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CHAPTER 5

INTEGER L.P. AND NUMBER THEORY

In the present chapter we will develop a generalization of the
Euclidean Algorithm, and we will explore the application of integer L. P.
to the solution of linear diophantine equatidnsa The importance of these

problems and of their solution is well established in number theory (for

instance, see refs. [23] and [24]).

5.1 Generalized Euclidean Algorithms

Whenever we talk of the greatest common divisor (g.c.d.) of two or

more numbers, or of a vector of numbers, it will be with the implicit
understanding that the numbers are integer, and that we are referring to

the g. c.d. of their absolute value.

The Euclidean Algorithm finds the g.c.d. of tw? nurnbers by B
performing successive divisions (where the divisor is the previous
remainder and the dividend i.s thé previous divisor), until the remainder
of a division becomes zero. The absolute value of the last divisor, which
is also the last non-zero remainder, is the g.c.d. of the two original

numbers. The procedure terminates in a finite number of steps.
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- {1f there are a ]

The traditional way of finding the g.c.d. of more than two numbers
has been to find first, by means of the Euclidean Algorithm, the g.c.d. of

Then the g.vc. d. of dl and another one

of the numbers is found, and so forth, until all of the numbers have been

two of the numbers; say it is d1 .
taken into consideratirgn.w‘];bei final}number obtained is shown to be the

g-c.d. of all the original numbers taken together.

We propose here a more general procedure, which is based in what

we call elementary operations on a vector. Consider a vector |
L 3 n

A= (al, cees an). An elementary operation is either: changing the sign
of one element, or, adding or subtracting from element ai"an integer
multiple of another element aj » j#1i. Thus, a, will be called the.

element to be transformed, and aj the transforming element.

Lemma 5.1: The g.c.d. of a vector is unchanged by elementary

operations.

| . , ,
Proof: I#L‘ t A= (al, @y e, an), where the ai' s are integer and |

{

at least one ofl hem is different from zero. Let d be the g.c.d. of A,

zero elements this does not make any difference because
any number is the divisor of zero. Thus, the g.c.d. of vector A as a
whole is the same as the g.c.d. of the non-zero elements of A).

One of the two types of elémentary operations is to change the sign
of one of the elements; this will obviously not affect the g. c.d. of the

vector.
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The other type of elementary operation is where a is changed
into ai+ka.j ;i#j, k=011, 1t2,,.. Letuscall A' the vector A
after we have applied one elementary operationrof‘the last type. We want
to show that the g.c.d. of A' is the g.c.d. of A . Say that d is the
g.-c.d. of A. We have to show that d is a common divisor of A' , and

that there is no larger common divisor of A' . If d is the g.c.d. of A

we can put

A= (al, oy an) = (dbl,’ dbz, . 'dbn)

After the elementary operatioh the only element that will be changed will

be' ai' . We will have
a'=a 4+ ka, =db, + kdb, = d(b. + kb))
i i j i j i J

Thus, d will be a common divisor of A'. Let Ai be the (n - 1)-element
vector that remains after we remove a, from A . The g.c.d. of Ai is
either d or a multiple of d. If itis d, then the g.c.d. of A' ,
A = (Ai, ai) = (Ai' cl(bi + kbj)), is also d because of the associative law
of the g.c.d. (see ref. [23], p. 48).

On the other hand, let us assume that the g.c.d. of Ai is cd,
where c is a positive integer larger than one. The only way in which
the g c.d. of A' would be larger than d, would be if the g.c.d. of cd
and ai = d(bi + kbj), was larger than d ; and this could only occur if ¢

and bi had some common divisor, as d1 , (dl >1). But if this were true,
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then the g.c.d. of A would have been d, in the first place. lIt follows

1

that ¢ and b, do no have any common divisor, and therefore, d is the
i

g.c.d. of A' , which proves the lemma. (Q.E.D.)

We can now propose' the following thecrem that justifies the

Generalized Euclidean Algorithm (G.E.A.).

Theorem 5.1: If we have an n-dimensional vector and we perform a

sequ'enc;e of elementary operations on it, so that only ;)ne non-zero element
remains; then the absolute value of this last number is the g.c.d. of the
original vector. |

'Ex_'g_o_f: The g.c.d. of a vector that has only one non-zero element
is precisely‘ the absolute value of that element. Therefore,‘ by lemma 5.1

it follows that this is the g. c.d. of the original vector. (Q.E.D.)

Any rule that guarantees the ""reduction' of the original vector (so
that it will have only one non-zero element) in a finite number of steps,
‘will constitute a valid G. E.A. The following rule provides a family of

convergent G.E. A, 's.

Rule: Always apply elementary operations such that the absolute
value of the transformed element is smaller than its previous absolute

value, and smaller than the absolute value of the transforming element.

The Euclidean Algorithm is a particular case of the G. E. A, because .

finding the remainder of the division is an elementary operation that
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satisfies the previous rule.

These results, although they are somewhat stronger and have been
developed independently, are similar to those of W. A. Blankinship
(ref. [22]). He not only finds the g.c.d. of n positiv'e integers, but also
finds one solution to the diophantine linear equation that has these n
integers as coefficients and the corresponding g.c.d. as constant; term.

His approach does not explicitly involve integer L. P,

~ In the following sections we will develop, by means of integer L. P.,
much more general results for the sclution of systems of diophantine

equations.

5.2 General Solution of Linear Diophantine Equations

A linear diophantine equation is a linear equation with two or more
unknowns, whose coefficients are assumed integral. The problem is to

find a set of integers, or a family of sets, that satisfy the equation.

The classical way of solving an equation with two variables is by
applying certain recursive relationships to the.quotients and remainders
obtained from the Euclidean Algorithm, when applied to the coefficients
of the two variables. This results in two expressions for the unknowns,
in terms of one afbitrary ihteger variable. An equation with n unknowns

(m > 2) is solved by solving a sequence of equations in two variables
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(method of repeated reductions). The final generail solution involves

n - 1 arbitrary integer variables. (See ref. [24], Chapter II).

A system of m linear diophantine équations with‘ n unknowns,
(m < n), is solved by obtaining the generall solution of one of them (in
terms of n -1 arbifrary integer variables) and by intfoducing the
resultirg expressions into a second equation; | the general solution of this
second equation will now involve n - 2 arbitrary variablés. The process
is repeated until every equation is considered. The final solution for the

n unknowns will involve n - m arbitrary integer variables.

General Solution of Systems of Equations

We propose here a more direct method of solution of systems of
linear diophantine equations. We will consider a tableau with m + n
rows, where the first m rows correspond to the m equations and will

have associated with them m zero-variables Sl’ ooy sm . The last m

rows will correspond to the n unknowns x .., x , and these will be
n

1’

considered unsigned variables (in the next section we will study the non-

negative solution, here we want the general sclution).

The method is to apply, to the first row, the row reduction
procedure of lemma 3. 3, until there is only one non-zero element besides,

th
perhaps, the zero element (a1 0). Let the non-zero element be

a ., j# 0. Then we know from lemma 3.2 that 0 <a

1,j 1,0
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a o > 0, then equation ] does not have any solution in integers. (We
’

would have s a, .t , butthere is no integer value of tj that

1-%,0 7 21,

makes 5 equal to zero because a o is not a multiple of a, j). However,

if al,O = 0, this means that t, is a zero-variable and column j rmay be
erased, thus reducing the size of the tahlzau. The procedﬁre is repeated
with the next row (now with only n - 1 variables), and the next, until
every one of the m rows has been reduced, and we are left with n

rows representing the general solution of the original m equations. The

procedure is guaranteed to enl in a finite number of steps (see lemma

3.3). For an alternate procedure see Appendix B.

Exarngle

Find the general solution of the diophantine system:

1

3xl -6x2+16x3

2x1+5x2- 6x3=2

The steps in the solution are:

1 -tl -tz -t3 1 -t4 -t2 -t3 1 --t4 -t‘2 -1:5
=
o ‘ (e} .
s1 1 37 -6 16 81 1 -3 o 1 sl 0 0 0 -1} « « tsrxs a zero-
et R |
s,[2 2 5 -6|s, 2 -2 9 16| 5,18 -50 9°:16 variable, the
X 0 -1 0o o0 X o 1 -2 5 x) -5 16 -2 :-5 tableau may
x.|0 0 -1 o©fx,J0 o -1 0|l x210 o0 -1'o " be reduced
2 2 2 ]
- 0 0 - 1 - }
X, 0 0 0 L Xy 0 1 X, 3 0] _1_J
* - 0 % - -
t4) 0 1 2 5 ts) 1 .3 1 t6) 2 -6 1
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4 6 7 6 7 8 9 8
C o . O o - o
s, 0 4" -9]s, 0 -4 37 8,10 2 ‘-3 5, 0o -2 1
x, -1 4 2 X, -1 -4.14 X -1 24 -14 X) -1 -24 34
) - -2 -
x, 2 -6 1 X, 2 6 -17 X, 2 -28 17 X, 2 28 -39
x3 1 -3 0 ::3 1 3 -9 X4 1 -15 9 X4 1 15 .21
: * . -2 1*x ot * - -2 1%
t)) 0 1x -3 tg) O gy 0 ¥ -2 t )0 |
1 -t9 -tlo
s. /0 0 -1 t is another zero-variable. The general
e 10
X -1 44, -34 solution is
‘ - - -
X, 2 -50, 39 x, = 1 -44k
x, |1 27} 21 . x,= 2450k  where k isan
Xy = 1+27k ‘arbitrary integer

Analysis of Congruences

Another important part of number theory is the solution of algebraic
congruences. A linear congruencé can be exprfessed as a linear diophantine
equation. For instance a x =b (raod ¢) is the same as the diophantine
equation: ax+ cy = b . Both the problem variable x, and the "modﬁlar”

variable y , are unsigned.

A system of linear congruences can be solved by the method given
above for the solution of systems of linear diophantine equations. One

special feature is that the value of the modular variables is of no interest,
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K
;

therefore, we only need rows corfesponding to the congruences and to

the problem variables.

5.3 Non-Negative Solutions of Diophantine Equations

The problem of finding non-negative solutions (i. e. solutions in
non-negative integers) of systems of linear diophantine equatioﬁsl is
also studied in number theory. The problem may be approached by means

of integer LP as will be shown in the following paragraphs.

As in the previous section, we will consider a tableau with
m+ n rows. The first m‘ rows correspond to the m equations and
ha\}e m zero-variables associated with them. The last n rows
correspond to the n unknowns, and these will now be constrained to be
non-negative. The first row is taken at the same time as objective
function and as a non-negative constraint; the idea is to minimize a0
until it becomes zero (if this is possible). But in doing this we pivot in
such a way that the variat?les remain non-negative. Once al'o has
become zero we may use the row reduction procedure of lemma 3.2,
until there is only one non-zero element alj’ j# 0 inrow 1. The
parametric variable associated with column j should be a zero-variable
so we can now reduce the tableau. We repeat m times this procedure

of reducing rows and reducing the tableau.
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The result will be a tablcau with n rows and n-m+ 1 columns
(n - m parametric variakbles plus the zeroth cdlumn). The zeroth column
will give one non-negative solution of the original system of équations,
If we are interested in finding the lexico-smallest ncn-negative solution,
we may apply our basic algorithm in order to minimize the solution of the
reduced tableau (taking into account that the n rows correspond to non-
negative variables). When every column becomes lexico-negative we
would have obtained the lexic;:-smallest non-negative solution of the

original system of equations.

The finite convergence of this procedure is, of course, dependent

on the finite convergence of the basic algorithm.

If one is interested in a positive solution, it is sufficient to state
the problem in terms of new variables xi , where xi ='xi -1, and

require that the x; be non-negative.
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CHAPTER 6

GEOMETRIC CONSIDERATIONS

6.1 The Restricted Polyhedron and the Primal Method

Any LP problem ip given by a set of linear constraints and a linear

objective function to be optimized. The set of constraints defines the

I '-' original convex polyhedron,and it can be shown that one of the vertices
| v

of this polyhedron corre\spohds to an optimal solution, if an optimal

solution exists. For the continuous (non-discrete) LP problem, any
\ : :

'point on fhe polyhedron or in its interior will be a feasible point. The
primal simplex method, through successive pivoting, advances from

» vertex to vertex until anb optimal vertex is found; and it does this in such.
a way that the value of tﬁe objective function is non-decreasing as the

| algorithm moves from one vertex to the next.

In the case of a discrete LP prqblem (see section 1.1), we also
have the original polyhedron, but it is no longer true that any point on

its surface is a feasible point. However, there exists one, and only one,
l

restricted convex polyhedron that is contained in the original polyhedron
and such that: a) every'vertex of the rectricted polyhedron is a feasible

point (i.e. it satisfies both the constraints and the discreteness
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réquirements), and b) there are no feasible pointé outside the restricted
polyhedron. (Notice that this does not imply that eve;'y point on or

within the restricted polyhedron is a feasible point.) The idea of the prim
algorithm is to advance (in a simplex-like manner) from a vertex of this
restricted polyhedrﬁn to a’qother vertex of the same polyhedron until the
optimurn is reached. By using the lexicographical sinlqplex method the -
algorithm always advaqces to another vertex that has a 1arger lexico-

graphical value (or smaller, if we are minimizing).

In order 'to constrain ou.r c amputational ""walk'" to the restriclted
polyhedron, we have to introduce some additional inequalities or "cuts".
These cutg sefve only as guiding walis and as stopping barriers to
constrain cur walk, but they need not actually correspond to any of the
planes that would define the restricted polyhedron. In the foliov?ing

sections we will develop these ideas further.

6.2 The Parametric Variables as a System of Coordinates

The following discussion has to do with our primal algorithm for

integer LP.

The original constraints of the problem are defined in terms of

' . . . . n
X ., X_, and are hence defined in an n-dimensional real space R
n .

1, o«
having these variables as coordinate.. But by means of linear trans-

formations we can express the constraints in terms of different sets of
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coordinates. This is precisely what we accomplish by pivoting: we
express all the constraints in terms of different sets of parametric

variables tl, .

of n arbitrary variables as long as the system of coordinates they define

k . N .
tn . It is possible to express the constraints in terms

covers. the complete space R”. However, by obtaining the parametric
variablels as the result of generating Gomory-cuts (remember that the
parametric variables are tﬁe slack variables of the Gomory inequalities)
we achieve the followiné results:

a) The n coordinate planes, cofresponding to the parametric
variables, intersect at one of thé vertices of the restricfed polyhedron.
This vertex is precisely the one represented by the current solution
(i.e. the point defined by the current values of xl, . e xn).

b) The restricted polyhedron is entirely contained in the non-

negative orthant of the space defined by the parametric variables, as

can be assured by the fact that these variables can only take non-negative

'his characteristic

values whenever we have a feasible (integer) solution.
i

is specially important for proving optimality. Notice alrlb that this
characteristic is spec1a11y 1mportant for proving optimatity. Notice also
that this characteristic does not impiy that the original polyhedron itself
will be entirely contained in the non-negative orthant. This is not the

case, for instance, if the current (integer) solution is not also a vertex

of the original polyhedron.
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c) There is a one-to-one mapping of the lattice of integer points

defined by x and the lattice of integer points defined by the

1o X
parametric variables. Among other things, this assures that whenever
the parametric variables have integer values so will the original variable
have and vice versa. This one-to-one correspondedce can be proved by
showing that the determinant of the matrix D that expresses the xi' 8

in terms of the parametric variables is always +1 or -1 (D is formed

with the n rows labeled Xppeonp X plus an auxiliary row -1 = -1

&
that helps to complete a (n+ 1) by (n+ 1) matrix. We will initially

have | DI =t , and our pivoting formulas result in column operations

that do not change the absolute value of | D] .)

In geometric terms, whenefver there is a breakthrough in a certain

column, this implies that the intersection of the n - 1 planes correspond
- # |

to the other parametric variableé, coincides with one of the edges of the
|

| re sfriFted polyhedron.

L |

Geometric visualizations of some of the aspects of the problem,
1 : :
although difficult to accomplish, provide additional insight into the workin:
| ; ‘
of the algorithm.

i
i
i

An Important Observation about Gomory Cuts

Another important observatlion and one that, to the best of our

knowledge, has not explicitly beeﬁ mare by Gomory or by anybody else,

I

l




is the following:

Any Gomory cut generated from a certain row i (constraint i)
will be such that it will be satisfied by every non-negative integer point
(non-negative wiﬂl respect to the current set of parametric variables)
that satisfies constraint i . However, the Gomory cut can be, aﬁd most
often will be, unsatisfied by some feasible in'teger points (feaéible with
respect to constraint .i ) that are non-negative wit . respect to the
original variables. The Gomory cut generated from row i is then also
a functicn of the rows that have been used to generate the current set of

parametric variables.

6.3 Inverse Pivoting

By successive .pivoting operations we express the original variables
(xl, coes xn) in terms of the pararhetric variables. If we wanted to express
the parametric variables in terms of the original variables, we would
have to invert the matrix that expresses the previous relationshin.
However, if we choose to carry this inverse matrix along with ouf
regular tableau, the updating operation is a simple one, and there is the
.added advantage of having obtained the inverse for every intermediate
tableau and not just for some specific tableau. The updating operation

will be called inverse pivoting, and it will be defined in the following




paragraphs.

Let us establish a matrix notation that is slightly different from th:

of (2.1.5):

Let
l'.z ) _ak ak gk ]
N 00 01 " ° ° Ton
[ a,k
1 10 ¢
8= . Ak = R .
'- ako ' akn (6.3.1
[ ™M . m m N
r".l- 1 - r . -
k
xl - -1 'tl
X = . Do = . Tk =
» ° ‘
x -1 -tk |

We will have

s A A

n
-
n

x b D | (6.3.2)




and
k+1 k

= P (6. 3. 3)

Dk+ 1 k

. k | . .
The square matrix P is the transformation matrix that expresses

the pivoting operation. Because we pivot on the .]0t element of the row

. k k k k _ .
(b0 . b1 ) s ooy bn ), and because bjO =1, we havg the following:
1
1
k k k k k
P = --b0 . . ‘_.bjO-l -1 -bj0+1 . . -bn (6.3.4)
1
. 1__J

From (6. 3. 3) we have

using (6. 3.2) we obtain, in general

x=p°p° P, . . P} ok
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from which

™= %P .. P x= P (eh et 097!
if we define EC = (D)1 =p°= -1 (6. 3. 6)
and

e o @ EX, k-0, 1, | (6.3.7)
then

tﬁ:zkx (6.3.8)

. k . . . .
Matrix P is an elementary matrix, and because row j0 has a -1 in

the diagonal, it turns out that it is its own inverse, as can be easily

verified by multiplication. Egquation (6. 3. 7) can then be expressed as

e¥(,+l=e¥<.; for i+ j0
1) 1)
n j=0,1,..., n (6.3.9)
RS2 Lok '
j0,j j 30,57
i=0

We may carry matrix Ek in oﬁr computaticns and perform the
addition of rows expressed in (6. 3.9), but it is mnernonicaliy easier to
carryvits tra'nspositioin and to perform the operafion on the corresponding
columns. .Thus, under each column of the regular tableau we will have
another column that expresses the corresponding parametric variable in

terms of the original variables.
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This technique of inverse pivoting is specially useful for research

or whenever one is interested in learning how the successive Gomory-cuts

look like in the original space.

6.4 Natural Inegualities

Let us consider the following inequality:

‘A8x1-7x2+5x3$19. 7 | ' (76.4.1)
Where X1 X, and x, are non-negative integex; variabies. If we
let X, =Xy = 0~ then (6.4.1) would imply xls 2 <[19/8]. Similarly if
X, =%, = 0 w would have Xy <3< 19/5] On the other hand, if we

generate a Gomory-cut from (6. 4.1) with p = 8 and another one with

p =5, we will have:

With p = 8: Xp =X, <2 (6.4.2)
i = 5 - < . 4.
WIth' p=5: X 2 X, + x4 3 | (6. 4. 3)

We see that (6.4.2) strictly binds x) {assuming X, =Xy = 0) tc the
integer value that (6.4.1) only implies; ana (6. 4. 3) binds Xy in a

similar way. We say that (6.4.2) is a natural inequality of (6.4.1) for

X, and (6. 4. 3) is a natural inequality of (6. 4. 1) for Xq

In general, if we have an inequality:

a x+a x,+...ta x SaO; (6. 4. 4)

1 2 2 n n
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and if a, has the same sign as a_, then the Gomory-cut generated from

1 0
(6. 4.4) with p = | ail is said to be the natural inequality of (6. 4. 4) with

respect to xi .

All the Gomory-cuts that are used in our primal algorithm are.
natural inequalities. (They are '"zero natural inequalities' or ''non-zero
natural inequalities" according to whether they are '"ze- o-cut" or not.)

1.

6.5 Deepest Cuts and Hierarchical Rules

We define a deepest cut as any of the hyperplanes that correspond to
the several faces of the restricted polyhedron. A deepest cut in this
sense, is different than the deepest cuts mentioned in [5], [8] and [11],

where the concept is more that of '"deepest' in a certain direction.

The number of faces of the res:ricted polyhedron may be smaller
than, equal to, or larger than the number of faces of the original polyhedro

as may be verified by drawing simple two dimensional examples.

A sufficient, but not necesséry, condition for a certain parametric
variable t. to be a '"deepest-cut variable" is if there i‘s a breakthrough
in every one of the other coluinns. This is because it shows that, besides
the current vertex, there are other n -1 vertices of the restricted
polyhedron that lie on the hyperplane tj = 0, thus determining it as a

deepest cut.
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In general, it is difficult to have a tableau in which every parametric

variable is a deepest cut variable. This is because by using an ''all-

integer'" method, we are limiting ourselves in our choice of sets of
g ) g

parametric variables. (If we take any n deepest cuts that define a vertex

of the restricted polyhedron and if we were to use this set as a system of
coordinates to express the original constraints, we would have to use, in

general, fractional coefficients.)

However, it is conceivable that one of the parametric variables

i ; h jecti f
(say tn ) might correspond to a deepest cut; and that the projection of a
second one (say tn 1 ), might be a deepest cut of the (n-1) dimensional
projection of the restricted polyhedron over the hyperplane tn = 0; and

subsequently, tn 2 could be a (n-2) dimensional deepest cut, and so

forth. This is the motivation for the hierarchical rules that were given
in section 4.3. A deeper study cf this aspect covld lead to better

hierarchical rules.

6.6 Geometric Considerations of Two-Dimensional Convergence

In section 4.2 we developed a proof of finite convergence of the
basic algorithm when applied to two-dimensional problems. In this
proof, an algebraic concept of dominance of rows was used. We will now

present the geometric motivation of this concept.

Let us consider the two-dimensional space as given in terms of
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the current parametric variables ta and tb . We will define the

primary region as the region given by ta 20, tb 20, z2 a5 0" That

is, every point in this region is non-negative and would give z a value
not smaller than its current value. Clearly, the optimal solution,

(aésuming it exists), is to be found in the primary region.

If a certain constraint (row) is satisfied by every point of the

primary region, the constraint is said to be dominated; if it is not

satisfied by a subset of this region it is said to be non-dominated. . This

geometric definition of dominance coincides with the algebraic definition

given in section 4.2, as it can easily be shown.

When the primary region does not include any point of the positive

orthant (i.e. any point such that ta >0, t >0)itmeans that the

b

objective function, z, has reached its optimal value, and the present

solution is optimal (although there might be other optimal solutions).

Whenever we generate a cut for pivoting, it will be non-dominated
and, once we pivot, the cut will become one of coordinate axis and the
new primary region will be a subset of the previous one. This will occur

whether we have a zero- or a non-zero-cut. If we have a non-zzro-cut,

k+1 k

ao, 0 > ao’ 0) so that the

there will be a shift of the line z = a':; 0 (when

primary region will be reduced further.

What the proof of section 4.2 shows, is, in geometric terms, that
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as we introduce new cuts, the primary region diminishes consistently
until the positive orthant (in terms of the current set of paramet.ic

variables) is completely excluded. At this point optimality is proved. .

In other words, every time we pivot, the system of coordinates is
: i .
translated from one vertex to another and/or rotated around a vertex of

the restricted polyhedron, so that eventually there is no better point in

the non-negative orthant of the (current) system of coordinatzs. .
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CHAPTER 7

SUGGESTED EXTENSIONS

In the ﬁrét section of this chapter we present the concept of a
"Tight Algorithm which would be similar to our basic algorithm except
thal; the parametri‘c variables would always correspond to déepest cuts. In
the second sectioﬁ we introduce the notion of fractionalization of variables,
and we advance some ideas as to how this concept .could be used to develop

a new approach for solving mixed integer LP problems.

7.1 A "Tight" Algorithm

Further stuay of the Gomory cuts in the context of the primal feasible

algorithm should lead to a procedure for generating some of the deepest

cuts that define any specific vertex of the restricted polyhedron. By using -

inverse pivoting these deepesf cuts may be expressed in terms of some

initial set of parametric variables.

To be more specific, let us assume that we have our tableau (with
an initial feasible solution), and that every parametric variable tj is a
deepest cut variable. This means that there is a breakthrough in every

column (some are in the maximizing direction, some in the minimizing
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direction). If we are maximizing we could choose any negative column

and we would be able to obtain a non-zero-cut that, upon pivoting, would

take us to another vertex. This non-zero-cut will not necessarily be a

deepest cut. However, we might be able to find a '"deepest cut procedure'
so that, in fact, we obtain the expression of that deepest cut which would
not only move to the next vertex, but the tableau would again be entirely in

terms of deepest cut variables.

The tableau would have rational coefficients, rather than integer

Ly

r all of the row

ones, but by appropriately changing the scale of some

variables, we should be able to keep the new coefficients in terms of

integers.

A "Tight" Algorithm could have two special advantages: in the first
place, it might turn out to be computationally more efficient than the
. Y,
Basic Algorithm (i.e. it might be an ""accelerated' version of the Basic
Algor.ith'm);- in the second place, the fact that at evei-yivertex the constraints
may be expressed in terms of a uniquely defined set of "ﬁaran'letric
variables (i.e. the variables corresponding to the deepest cuts that define

that vertex) could turn out to have important consequences for the study of

duality in integer LP.
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7.2 Fractionalization of Variables and Mixed Integer LP

Two of the reasons for the use of all-integer algorithms in integer
LP are: first, to obtain exact solutions; and second, to use, at least
implicitly,. the number theoretic propertie; of the coefficients. However,
it should be pointed out that the generatio/r/l” of Gomory c'uta is valid
~whether the coefficients are integer or _not.. For example, if all the
coefficients of the tableau (excepﬁng the last n rows which give the
integer variables xj yi=1l,.. ., n in terms of the parametric variables
tj ) were not integral, our primal feasible algorithm should still work. .The
slack variables might not have integer values, but the xj' s will always

have integer values.

We define fractionalization of a variable as the process of replacing
a parametric variable. tj by énqthér variable t,'i such that tj = t}/k ,
where k is some positive integer. This is equivalent to dividing every
element in column j by k. We could either express these new elements
as rational numbers, or as decimaln‘/fractions; or we could multiply evei‘y
element of the tableau by k s ‘thus eliminating fractions by éhanging the

scale of the row variables.

The result of this fractionalization is that the lattice of integer
points of the new system of coordinates is "finer" (in the tj-direction)

than the previous lattice. However, every point of the old lattice is also
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a point of the new one.

If all the coefficients and constants of a mixed integer LP problem
are rational numbers, then every extreme »lution (i.e. every vertex of.
the restricted polynedron) will be in terms of rational numbers. It is
conceivable that a mixed integer LP problem could be transfofﬁed intoa

pure integer LP problem by proper fractionalization of some of the

variables.
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APPENDIX A

SOME CONSIDERATIONS ABOUT THE LEXICOGRAPHICAL

SIMELEX METHOD

A. 1 Proof of Optimality

Lemma A.1 If the tableau is both primal feasible and dual feasible,

the current solution is optimal.

Procf: Let us assume tnat we are maximizing. If the tableauis
. . k . , |
dual feasible, it then means that ao j 20; j=1,..., n. The current

expression for z is:

j=1

. k . . .
We can restrict the t.'s to be non-negative without losing any
N | , -
feasible (integer) sclution. But if the tj 's are non-negative, this means

that the largest value of z is preciseiy a.k

00" and therefore, the current
]

solution, being feasible, is also optimal.

If we were minimizing, dual feasibility would imply that

a, j <0;j=1,.. . , n and the proof would follow in a similar way. (Q.E.D.)

-97-




A. 2 Proof of Lexico-Optimality

Lemma A.2 If the tableau is both primal feasible and lexico-dual

feasible, the current solution is lexico-optimal.

Proof: Let us assume that we are lexico-maximizing. If the tablea
is lexico-dual feasible, it means that every column (not considering
column zero) is lexico-positive; that is, the first non-zero element of

each column is positive. This means that ad j 20, j=1,..., n, and
] .

from lemma A.1l, we realize that z has attained its maximum value. We
. have to check whether the solution is the lexico-larges't feasible solution.

. . th : . .
That is, we have to sce if the h component of the solution could increas
its current value without decreasing the value of any one of the previous

components. Consider the following row:

j=1
. k .
Now, because we constrain the tj 's to be non-negative, sh can

only increase if a.k ., < 0 for some j, say j=jO0O. Butif a.k 0,

h, j h, j0 <

k
this means that there must be some i< h such that a,

..> 0, because
i, jO '

every column is lexico-positive. Thus, if we increase t.. , the value of

j0
8, will certainly increase, but 8, will decrease, and this will result in

a lexico-smaller solution. Therefore, the current solution is the lexico-

largest.
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A similar argument would be used if we were Jexico-minimizing.
(Q.E.D.)

A. 3 The Usefulness of a Lexicographical Simplex Method

If we are minimizing with a "plain" simplex method, we consider for
pivoting only those columns j with a, j > 0 ; whereas, if we are using a
’

lexicographical method, we will consider those columns which are lexico-

positive.
Let us consider the following problems:

min z = X, = X4
. . _ < _
with X, =%, +2 X, 1 ﬂ

- <
x1 2x2+x3 1

X X_., X. non-negative integers
1" %20 %3 g E

If we try to solve this example with our basic algorithm, and using
a ""plain" criterion for considering pivoting columns, we will é.lways have
a single choice of pivoting column and a single choice of generating row.

Furthermore, cycling will occur and the optimal solution will not be S

found.

Aty B e At i b

On the other hand, if we use a lexicographical criterion for

considering pivoting columns, we will obtain the lexico-optimal solution

in four iterations. This example shows that the lexicographical simplex

it ol o e e it s




method, or some other device to stop cycling, is necessary for our bas

algorithm,
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APPENDIX B

LEXICO-MINIMIZATION AS A PROCEDURE

FOR IMPLICIT TABLEAU REDUCTION

In Chapter 3 it was shown how one could take adw)aptage of any
eqﬁalities in the original problem, for réducing the size of the tableau
through the elimiﬁation of zero-variables. It tﬁrns out that an equivaient
result can bé obtained in some instances by properly rearranging rows and

then lexico-minimizing the problem.

More specifically, let us assume that we have a tableau such that
the only infeasibilities correspond to some zlero-variables that have non-
zero values. We now rearrange the rows so that all the zero-variable
fows occupy the first places (including those zero-variable rows that are ' ,
feasible), followed by the objective variable row, by the rows corresponding
to non-negative variables, and by the rows corresponding to other unsigned

variables (we may have or may not have an objective variable).

If the problem is lexico-minimized and there exists a feasible
solution, the first components of the solution - those corresponding to the
zero-variables - will have a value of zero. Furthermore, because the

lexico-optimal solution requires that every column be lexico-negative,
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this implies that there is no positive element in the first row. As a
matter of fact, in the process of solution there will be a step where only
one negative element will be left in row 1; every ofher element being
zero. It follows that the column corresponding to this negative element
will never again be chosen for pivoting because it is lexico-negative and

there is no way in which it can change its lexicographical sign. This is

what we call implicit reduction of the tableau. Similarly, the second row
will reach a later Istep where (if we leave out the column implicitly reduced
by row 1) it will have a single negative element among zero elements.

This negative element determines another negative column that is
implicitly reduced, and which will not be chosen for pivoting. A similar
thing may happen with every zero-var‘iable row. Ttlle net result is that the

tableau automatically acquires a triangular canonical form.

-102-




BIOGRAPHICAL NOTE

. Rémulo Hector Gonza{lez—Zubieta was born in Mexico City, Mexico,
on September 11, 1939. He attended private primary and secondary

schools in Monterrey, Mexico.

He attended the Instituto Tecnologico de Monterrey and received the

degrees of Licenciado en Matematicas and of Licenciado en Fisica, both

with "Mencion Honc‘iriﬁca", in iune, 1960.

Mr. Gonzdlez-Zubieta received a U. S. State Department Scholé.rship
thrbugh the Institutje of International Education for ‘study at the Massachusetts
Institute of Technolggy in 1960-1961. He has been ;ppointed Research _
Assistant at the Opérations Research Center, M.I. T. during the four
academic years 1961-1965. The Banco de Mexico, S.A, has granted him
financial support from September, 1963 to June, 1965. In June, 1962, Mr.

_ Gonz4lez-Zubieta received the degree of Master of Science in Industrial

Management. His thesis was awarded the E. P. Brooks Prize for the best

graduate thesis in t?le School of Industrial Management in 1962.

During the suxjnmers of 1961, 1962 and 1963 he has been a consultant

|
|

for IBM de Mexico,}Empaques de Carton Titan, and C-E-I-R de Mexico,

respectively.

-103-




7
f

Mr. Gonzflez-Zubieta is a member of the Operations Research

Society of America, and of The Institute of Management Sciences.

In December 1963, he married the former Bertha Diaz Barreiro

Saavedra. Their first child is Monica Irene.

-104-




